Category: Embedded Testing

IT OutsourcingSoftware TestingSoftware TestingSoftware TestingSoftware TestingSoftware TestingSoftware TestingSoftware TestingSoftware TestingSoftware Testing

An Ultimate Guide to Offshore Software Testing Success

The trend of outsourcing software testing, particularly to offshore companies, has gained momentum in recent years and it’s for good reason – substantial cost savings.

Indeed, a 2023 study by Zippia revealed that 59% of respondents view outsourcing as a cost-effective solution. This advantage is largely attributed to the lower labor costs found in notable offshore software testing centers like Vietnam. Notably, according to the same research, U.S. businesses can achieve labor cost reductions ranging from 70% to 90% by overseas outsourcing.

Keep on reading to learn about the structure of an offshore software testing team, important considerations for effective outsourcing, strategies for maximizing the benefits of this model, and much more.

What is Offshore Software Testing?

Offshore software testing refers to delegating the software testing process to a service provider located in another country, often in a different time zone. Rather than maintaining an internal team for these tasks, companies collaborate with offshore partners to execute various testing types such as application testing, mobile testing, agile testing, functional testing, and non-functional testing.

Also read: 6 reasons to choose software testing outsourcing

What is Offshore Software Testing

What is Offshore Software Testing?

Onshore vs. offshore software testing

To better understand offshore quality assurance (QA) testing services, it’s important to clarify that geography plays a significant role in this definition. This means that not all remote teams qualify as offshore and if they’re based in the client’s country, sharing the same working hours and language, they’re still classified as onshore testers.

For your quick reference, check out the comparison table below:

Aspect

Onshore software testing Offshore software testing

Location

Conducted within the same country Executed in different countries

Time zones

Same time zone Different time zones

Cost

Higher due to local labor expenses More cost-effective thanks to significantly lower labor costs in potential outsourcing countries like Vietnam

Communication 

Facilitates smoother and more consistent communication between teams, reducing misunderstandings from language barriers May experience miscommunication resulting from language differences

Association

Allows for easier management of testing requirements and greater control over personnel Requires strong coordination and thorough project management

Proficiency and quality

Benefits from local expertise and quality Gets access to a diverse talent pool with varying levels of quality

Legal and compliance

Aligns with local regulations Must adhere to global legal and compliance standards

Learn more: A complete comparison of nearshore vs. offshore software outsourcing

Structure and Responsibilities of the Perfect Offshore Software Testing Team

The offshore testing team’s structure and size are shaped by different factors, such as the project’s complexity, timeline, and existing resources. However, a typical structure includes 7 key roles as outlined below.

It’s worth noting that not every company requires all of these roles; therefore, businesses should tailor their team composition based on their unique needs.

Structure of the Perfect Offshore Software Testing Team

Structure of the Perfect Offshore Software Testing Team

Manual QA testers

Manual testers are the backbone of most testing projects, handling a large portion of the workload. For mid-sized projects, a team of 3-5 manual QAs is generally sufficient.

QA lead

The QA lead manages the manual QA team, fostering effective communication and coordination. In some instances, this role may be filled by a senior member of the team, who also engages in hands-on testing activities while leading the group.

Automation QA specialists

Automation testers are indispensable for mid- to large-scale projects, particularly those that involve repetitive tests, such as regression testing. Automation specialists typically join the project after manual testers have made initial progress. In some cases, they may start earlier if preliminary tests have been completed by a prior team.

Automation QA lead

The automation QA lead supervises the automation QA team and also participates in numerous testing tasks. Often, the automation lead joins the project before the rest of the team to set up a strong foundation for subsequent work by the automation QAs.

Project manager (PM)

This key role acts as a liaison between the client and the vendor. While a PM can work on the vendor’s side, this arrangement is most suitable for larger projects that deliver services beyond testing. For most testing projects, having a PM on the client’s side is preferable.

DevOps engineer

Responsible for creating the necessary infrastructure, the DevOps engineer makes sure that both development and testing teams have everything they need to operate effectively without interruptions. While a DevOps engineer can work on the client’s side, having a dedicated DevOps engineer within the vendor’s organization often provides more advantages.

Business analyst (BA)

The business analyst gathers business data and insights to recommend pathways for organizational success. The involvement of a BA in a testing project—at least on a part-time basis—can significantly enhance the quality and outcome of the software produced.

In addition to these 7 roles in a testing team, the presence of a development team also greatly contributes to the success of a QA project. This is because without developers available to address bugs identified during testing, the offshore testing team may find itself limited to conducting only initial tests, leading to potential delays in the overall process. Many organizations benefit from harnessing two offshore teams—one for development and another for testing—or maintaining an in-house development team.

Also read: 

Key Considerations When Hiring an Offshore QA Testing Team

Whether a company requires a team for a short-term project or is looking to establish a long-term partnership, selecting the right offshore software testing company is a critical decision. Hiring offshore software testing teams without a well-thought-out process can lead to unsatisfactory outcomes.

To achieve successful and mutually beneficial QA collaboration, organizations should take into account 4 key factors as follows:

Key Considerations When Hiring an Offshore QA Testing Team

Key Considerations When Hiring an Offshore QA Testing Team

Expertise and experience

Evaluating the provider’s experience within a specific industry and with projects of similar scale holds significant importance. A partner with a background in the same sector or comparable projects is more likely to deliver results that align closely with future business requirements.

Besides, look for a team with a strong track record in testing methodologies and tools relevant to the project needs. Checking the offshore team’s proficiency with the latest QA technologies and methodologies also helps confirm the project benefits from advanced testing practices.

Additionally, versatility in testing approaches enhances the ability to adapt to differing project needs.

Communication and collaboration

Having clear and consistent communication forms the foundation of any successful partnership. Therefore, companies should prioritize offshore partners that demonstrate strong communication skills and use tools that seamlessly integrate with existing collaboration platforms like Slack and Microsoft Teams.

Security and compliance

Conducting a careful review of the vendor’s security protocols and their compliance with relevant data protection regulations is a must for safeguarding sensitive project data. One useful approach to gauge their handling of these matters is to reach out to the provider’s previous clients for insights.

Cost and pricing model

Rather than settling on the first option, businesses should explore various pricing models from multiple providers since it’s of great importance to opt for the offshore testing team whose pricing structure fits the organization’s budget and project needs.

For more tips on optimizing software testing costs, feel free to check out our blog about how much does software testing cost and how to optimize it.

Learn more: 

How to Make the Most of the Offshore Software Testing Team?

Choosing the right vendor and building a well-structured team are just the first steps. Continuous and efficient management of offshore testing partners is equally vital in maintaining the QA project’s desired quality.

Here are 5 key strategies to better manage offshore QA testing teams:

How to Make the Most of the Offshore Software Testing Team

How to Make the Most of the Offshore Software Testing Team?

Cultivate strong relationships with the QA team members

A strong rapport and a foundation of trust with the offshore testing team profoundly influence the project’s success.

Begin by building personal connections with them, learning their names, pronunciations, etc.

Encourage team members to create simple slides introducing themselves, including photos and basic information. This is especially helpful when integrating in-house and offshore QA teams.

A project manager might be just the right person to facilitate these connections and strengthen team dynamics.

Communicate effectively and overcome language barriers

Most offshore QA team members possess a good command of English, sufficient for handling technical documentation and day-to-day interactions.

Nevertheless, communication challenges might still arise, especially in offshore settings.

Regular team meetings, structured communication protocols, open discussions, and informal check-ins are a few ways to alleviate potential misunderstandings.

Strike a balanced onshore-offshore partnership

It’s not advisable to assign all testing tasks to offshore teams solely to reduce costs.

Instead, organizations should evaluate which testing activities can realistically be managed by offshore experts, taking into account the complexity of business processes and any access challenges related to testing systems.

This approach clarifies roles and responsibilities for both in-house and offshore teams, allowing for appropriate task assignments based on each team member’s strengths and expertise.

Adapt the issue management process

Using management tools for documenting and tracking defects is common practice, but many projects overlook the importance of effective issue management to address functional, technical, and business-related questions that an offshore quality assurance team may encounter during testing.

To optimize this process, companies should encourage the offshore testing team to utilize a robust web-based document management system.

In addition, don’t forget to leverage time zone differences since a significant time gap can be transformed into an opportunity for near-continuous testing operations and maximizing productivity.

Implement documentation best practices

Another helpful tip is maintaining proactive, clear, and thorough documentation. Starting this process early—even before project launch—enables all stakeholders to quickly access relevant materials to preempt or resolve possible misunderstandings.

Organizations should establish firm guidelines that encompass all areas of documentation: test scenarios, test scripts, execution procedures, results documentation, etc.

Choosing a suitable test management tool is based on the company’s specific needs, but accessibility across locations and proven effectiveness should top the list of criteria.

How Does Offshore Software Testing Operate At LQA?

LQA offers a host of offshore software testing services, ranging from software/hardware integration and mobile application testing to automation, web application, and embedded software testing.

We pride ourselves on providing access to top-tier Vietnamese QA engineers. Our commitment to quality is evident in our impressive track record: a leakage rate of just 0.02% and an average CSS point of 9/10.

Central to LQA’s success is a clearly defined workflow that enables our testing experts to approach each project systematically and efficiently.

Here’s a step-by-step look at our process:

How Does Offshore Software Testing Operate At LQA

How Does Offshore Software Testing Operate At LQA?

Step 1. Requirement analysis

Our skilled testing professionals start by gathering and analyzing the client’s requirements. This critical step allows us to customize the software testing lifecycle for maximum efficiency and formulate pragmatic approaches tailored to each project.

Step 2. Test planning

Once the LQA team completes the requirement analysis and planning phase, we clearly define the test plan strategy. This involves outlining resource allocation, test environment specifications, any anticipated limitations, and a detailed testing schedule.

Step 3. Test case development

Guided by the established test plan, our IT experts create, verify, and refine test cases and scripts, ensuring alignment with the project objectives.

Step 4. Test environment setup

LQA’s team meticulously determines the optimal software and hardware conditions for testing the IT product. If the development team has already defined the test environment, our testers perform a thorough readiness check or smoke testing to validate its suitability.

Step 5. Test execution

With over 8 years of experience in quality assurance, our dedicated testers execute and maintain test scripts, carefully documenting any identified bugs to guarantee the highest quality.

Step 6. Test cycle closure

After finishing the testing process, our offshore software QA team generates detailed reports, conducts open discussions on test completion metrics and outcomes, and identifies any potential bottlenecks to streamline subsequent test cycles.

Experience offshore software testing firsthand with LQA

Pros and Cons of Offshore Software Testing

Pros and Cons of Offshore Software Testing

Pros and Cons of Offshore Software Testing

Pros

  • Cost-effectiveness: Lower labor costs in many offshore locations translate to significant budget savings.
  • Expanded talent pool: Organizations gain access to a global network of skilled testers with specialized offshore QA expertise.
  • Scalability and flexibility: Offshore teams can be adjusted quickly to accommodate evolving project needs, offering both short and long-term engagement options.
  • 24/7 testing coverage: Continuous testing support and faster iteration cycles are possible with round-the-clock operations.
  • Government support: Governments in many regions, including Southeast Asia and Eastern Europe, incentivize offshore partnerships with favorable tax incentives and legal frameworks.
  • Comprehensive documentation: Offshore testing services providers often adhere to rigorous documentation standards, providing transparency and reducing miscommunication risks.

Cons

  • Communication barriers: Language and cultural differences require proactive management to mitigate misunderstandings.
  • Time zone differences: Clear communication and potentially staggered schedules are necessary to bridge time gaps.
  • Intellectual property protection: Thorough due diligence and robust security measures are crucial when entrusting sensitive information to offshore software testing companies.

Future Trends in Offshore Software Testing

Software testing offshore is changing rapidly to keep pace with technological advancements and industry demands. While predicting the future with absolute certainty is impossible, several trends are likely to shape the industry moving forward.

Future Trends in Offshore Software Testing

Future Trends in Offshore Software Testing

  • Artificial intelligence & machine learning integration: Artificial intelligence and machine learning are expected to drive smarter automation, from test case creation and defect prediction to self-healing tests.
  • DevOps & agile integration: The integration of development and testing teams is becoming increasingly important for expediting release cycles and improving overall product quality. Offshore teams are poised to play a crucial role in continuous testing and feedback loops, carrying out a seamless development process that adapts to shifting requirements.
  • Blockchain in offshore software QA: Blockchain technology introduces secure, tamper-proof solutions for managing testing artifacts and data. By delivering trust and transparency in the testing process, blockchain can improve the integrity of testing operations, making it an attractive option for organizations seeking reliable and verifiable testing outcomes.

FAQs about Offshore Software Testing

What is offshore software testing?

Offshore software testing refers to delegating the software testing process to a service provider located in another country, often in a different time zone. Rather than maintaining an internal team for these tasks, companies collaborate with offshore partners to execute various testing functions.

When should I consider using offshore software testing?

Offshore software testing proves advantageous in many scenarios:

  • Large, complex, or long-term projects: When testing demands exceed internal resources.
  • Budget or time constraints: Accessing potentially lower labor costs and 24/7 testing coverage.
  • Focus on core competencies: Freeing up internal teams by delegating specialized testing.
  • Global market expansion: Leveraging expertise in testing for different languages and regions.
  • Access to cutting-edge trends: Tapping into providers at the forefront of testing innovations.

How do I choose the right offshore testing provider?

To choose the right offshore testing partner, conduct in-depth research and consider these essential factors:

  • Reputation & experience: Look for established providers with a proven track record and positive client testimonials.
  • Expertise & skills: Ensure the provider possesses the required technical skills and domain knowledge relevant to your project.
  • Quality assurance: Inquire about quality control measures, certifications, and adherence to industry best practices.
  • Tools & infrastructure: Verify access to the necessary testing tools, environments, and infrastructure.
  • Communication & culture: Prioritize clear communication, cultural fit, and a collaborative approach.

What are the key considerations for effective offshore software testing?

Successful offshore software testing depends on numerous factors.

  • Crystal-clear communication: Define project requirements, expectations, and timelines upfront.
  • Seamless collaboration: Maintain regular communication and leverage collaborative tools for progress monitoring.
  • Timely feedback loops: Establish a system for providing prompt and constructive feedback on testing results.
  • Strong partnership: Cultivate a relationship built on transparency, trust, and mutual understanding.

Final Thoughts about Offshore Software Testing

Engaging in offshore software testing brings numerous advantages for organizations. However, selecting the right team necessitates careful consideration of different factors, from expertise, communication, and security measures, to pricing structures.

By establishing a well-structured offshore software testing team and implementing the right strategies and best practices, firms can harness this approach to achieve superior software quality, quicker time-to-market, and greater cost efficiency.

For those seeking trustworthy, professional, and experienced offshore software testing services, LQA stands out as a top provider. With over 8 years of experience, we deliver high-quality and cost-effective software testing solutions to clients worldwide. Our offerings include quality assurance consulting and software testing implementation across a wide range of software testing services, such as software/hardware integration testing, mobile application testing, automation testing, web application testing, and embedded software testing.

Experience offshore software testing firsthand with LQA

Mobile AppWeb App

How Much Does Software Testing Cost and How to Optimize It?

The need for stringent quality control in software development is undeniable since software defects can disrupt interconnected systems and trigger major malfunctions, leading to significant financial losses and damaging a brand’s reputation.

Consider high-profile incidents such as Nissan’s recall of over 1 million vehicles due to a fault in airbag sensor software or the software glitch that led to the failure of a $1.2 billion military satellite launch. In fact, according to the Consortium for Information and Software Quality, poor software quality costs US’ companies over $2.08 trillion annually.

Despite the clear need for effective quality control, many organizations find its cost to be a major obstacle. Indeed, a global survey of IT executives reveals that over half of the respondents view software testing cost as their biggest challenge. No wonder, companies increasingly look for solutions to reduce these costs without sacrificing quality.

In this article, we’ll discuss software testing cost in detail, from its key drivers and estimated amounts to effective ways to cut expenses wisely.

Let’s dive right in!

4 Common Cost Drivers In Software Testing

A 2019 survey of CIOs and senior technology professionals found that software testing can consume between 15% and 25% of a project’s budget, with the average cost hovering around 23%.

So, what drives these substantial costs in software testing? Read on to find out.

Common Cost Drivers In Software Testing

4 Common Cost Drivers In Software Testing

Project complexity

First and foremost, the complexity of a software project is a key determinant of testing costs.

Clearly, simple projects may require only minimal testing, whereas complex, multifaceted applications demand more extensive testing efforts. This is due to the fact that complex projects usually feature intricate codebases, numerous integration points, and a wide range of functionalities.

Testing methodology

The chosen testing methodology also plays a big role in defining testing costs.

Various methodologies, such as functional testing, non-functional testing, manual, and automated testing, carry different cost implications.

Automated testing, while efficient, requires an upfront investment in tools and scripting but can save time and resources in the long run since it can quickly and accurately execute repetitive test cases.

On the other hand, manual testing might be more cost-effective for smaller projects with limited testing requirements, yet may still incur ongoing expenses.

Dig deeper: Automation testing vs. manual testing: Which is the cost-effective solution for your firm?

Testing team

The testing team’s type and size are also big cost factors. This includes choosing between an in-house and outsourced team, as well as considering the number and expertise of the company’s testing professionals.

An in-house team requires budgeting for salaries, benefits, and training to ensure they have the necessary skills and expertise. Alternatively, outsourcing to third-party providers or working with freelance testers can reduce fixed labor costs but may introduce additional considerations like contract fees and potential language or time zone differences.

Learn more: 6 reasons to choose software testing outsourcing

Regarding team size and skills, obviously, larger teams or those with more experienced testers demand higher costs compared to smaller teams or those with less experienced staff.

Testing tools and infrastructure

Another factor that significantly contributes to the overall cost of software testing is testing tools and infrastructure.

Tools such as test management software, test automation frameworks, and performance testing tools come with their own expenses, from software licenses, training, and ongoing maintenance, to support fees.

For further insights, consider these resources:

As for testing infrastructure, it refers to the environment a company establishes to perform its quality assurance (QA) work efficiently. This includes hardware, virtual machines, and cloud services, all of which add up to the overall QA budget.

8 Key Elements That Increase Software Testing Expenses

Even with a well-planned budget, unexpected costs might still emerge, greatly increasing the expenses of software testing.

Below are 8 major elements that may cause a company’s testing expenses to rise:

Key Elements That Increase Software Testing Expenses

8 Key Elements That Increase Software Testing Expenses

  • Rewriting programs: When errors and bugs are detected in software, the code units containing these issues need to be rewritten. This process can extend both the time and cost associated with software testing.
  • System recovery: Failures during testing or software bugs can result in substantial expenditures related to system recovery. This includes restoring system functionality, troubleshooting issues, and minimizing downtime.
  • Error resolution: The process of identifying and resolving bugs, which often requires specialized resources, extensive testing, and iterative problem-solving, can add new costs to the testing budget.
  • Data re-entry: Inaccuracies found during testing often necessitate data re-entry, further consuming time and resources.
  • Operational downtime: System failures and errors can disrupt operational efficiency, leading to downtime that causes additional costs for troubleshooting and repairs.
  • Strategic analysis sessions: Strategic analysis meetings are necessary for evaluating testing strategies and making informed decisions. However, these sessions also contribute to overall testing costs through personnel, time, and resource expenditures.
  • Error tracing: Difficulty in pinpointing the root cause of software issues can lengthen testing efforts and inflate costs. This involves tracing errors back to their source, investigating dependencies, and implementing solutions accordingly.
  • Iterative testing: Ensuring that bug fixes do not introduce new issues often requires multiple testing rounds, known as iterative testing. Each iteration extends the testing timeline and budget as testers verify fixes and guarantee overall system stability.

How Much Does Software Testing Cost?

So, what’s the cost of software testing in the total development cost exactly?

It comes as no surprise that there’s no fixed cost of software testing since it varies based on lots of factors outlined above.

But here’s a quick breakdown of software testing cost estimation, based on location, testing type, and testing role:

  • Cost estimation of QA testers based on location
Location Rates
USA $35 to $45/ hour
UK $20 to $30/ hour
Ukraine $25 to $35/ hour
India $10 to $15/ hour
Vietnam $8 to $15/ hour

Learn more: Top 10 software testing companies in Vietnam in 2022

  • QA tester cost estimation based on type of testing
Type of testing Rates
Functional testing $15 to $30/ hour
Compatibility testing $15 to $30/ hour
Automation testing $20 to $35/ hour
Performance testing $20 to $35/ hour
Security testing $25 to $45/ hour
  • QA tester cost estimation based on their role
Type of tester Rates
Quality assurance engineer $25 to $30/ hour
Quality assurance analyst $20 to $25/ hour
Test engineer $25 to $30/ hour
Senior quality assurance engineer $40 to $45/ hour
Automation test engineer $30 to $35/ hour

How To Reduce Software Testing Costs?

Since many companies are questioning how to reduce the cost of software testing, we’ve compiled a list of top 8 practical best practices to help minimize these costs without compromising quality and results. Check them out below!

How To Reduce Software Testing Costs

How To Reduce Software Testing Costs?

Embrace early and frequent testing

Testing should be an ongoing task throughout the development phase, not just at the project’s end.

Early and frequent testing helps companies detect and resolve bugs efficiently before they escalate into serious issues later on. Plus, post-release bugs are more detrimental and costly to fix, so addressing them early helps maintain code quality and control expenses.

Prioritize test automation

Test automation utilizes specialized software to execute test cases automatically, reducing the reliance on manual testing.

In fact, according to Venture Beat, 97% of software companies have already employed some level of automated testing to streamline repetitive, time-consuming QA tasks.

Although implementing test automation involves initial costs for tool selection, script development, and training, it ultimately leads to significant time and cost savings in the long term, particularly in projects requiring frequent updates or regression testing.

Learn more: Benefits of test automation: Efficiency, accuracy, speed, and ROI

Apply test-driven development

Test-driven development (TDD) refers to writing unit tests before coding. This proactive approach helps identify and address functionality issues early in the development process.

TDD offers several benefits, including cleaner code refactoring, stronger documentation, less debugging rework, improved code readability, and better architecture. Collectively, these advantages help reduce costs and enhance efficiency.

Consider risk-based testing

Risk-based testing prioritizes testing activities based on the risk of failure and the importance of each function.

By focusing on high-risk areas, this approach simplifies test planning and preparation according to the possibility of risks, which not only improves productivity but also makes the testing process more cost-effective.

Implement continuous testing and DevOps

DevOps focuses on combining development and operations, with testing embedded throughout the software development life cycle (SDLC).

When integrating testing into the DevOps pipeline like that, businesses can automate and execute tests continuously as new code is developed and integrated, thereby minimizing the need for expensive post-development testing phases.

Use modern tools for UI testing

Automating visual regression testing with modern, low-code solutions is an effective approach for UI testing.

These tools harness advanced image comparison, analyze and verify document object model (DOM) structure, on-page elements, and handle timeouts automatically. Thus, they allow for rapid UI tests – often in under five minutes – without requiring extensive coding.

In the long run, this practice saves considerable resources, reduces communication gaps among developers, analysts, testers, and enhances the development process’ overall efficiency.

Account for hidden costs

Despite efforts to manage and reduce software testing expenses, unexpected hidden costs can still arise.

For instance, software products with unique functionalities often require specialized testing tools and techniques. In such instances, QA teams may need to acquire new tools or learn specific methodologies, which can incur additional expenses.

Infrastructure costs can also contribute to hidden costs, including fees for paid and open-source software used in automated testing, as well as charges for cloud services, databases, and servers.

Furthermore, updates to testing tools might cause issues with existing code, necessitating extra time and resources from QA engineers.

Outsource software testers

For companies lacking the necessary personnel, skills, time, or resources for effective in-house testing, outsourcing is a viable alternative.

Outsourcing enables access to a broader pool of skilled testers, specialized expertise, and cost efficiencies, particularly in regions with lower labor costs, such as Vietnam.

However, it’s important for businesses to carefully evaluate potential outsourcing partners, establish clear communication channels, and define service-level agreements (SLAs) to ensure the quality of testing services.

For guidance on selecting the right software testing outsourcing partner, check out our resources on the subject:

At LQA – Lotus Quality Assurance, we offer a wide range of testing services, from software and hardware integration testing, mobile application testing, automation testing, web application testing, to embedded software testing and quality assurance consultation. Our tailored testing models are designed to enhance software quality across various industries.

Contact LQA for reliable and cost-effective software testing

4 Main Categories of Software Testing Costs

Software testing expenses generally fall into four primary categories:

4 Main Categories of Software Testing Costs

4 Main Categories of Software Testing Costs

  • Prevention costs

Prevention costs refer to proactive investments aimed at avoiding defects in the software. These costs typically include training developers to create maintainable and testable code or hiring developers with these skills. Investing in prevention helps minimize the likelihood of defects occurring in the first place.

  • Detection costs

Detection costs are related to developing and executing test cases, as well as setting up environments to identify bugs. This involves creating, running tests, and simulating real-world scenarios to uncover issues early. Investing in detection plays a big role in finding and addressing problems before they escalate, helping prevent more severe issues later on.

  • Internal failure costs

These costs are incurred when defects are found and corrected before the product is delivered. They encompass the resources and efforts needed to debug, rework code, and conduct additional testing. While addressing bugs internally helps prevent issues from reaching end users, it still causes significant expenses.

  • External failure costs

External failure costs arise when technical issues occur after the product has been delivered due to compromised quality. External failure costs can be substantial, covering customer support, warranty claims, product recalls, and potential damage to the company’s reputation.

In general, the cost of defects in software testing accounts for a major portion of the total testing expenses, even if no bugs are found. Ensuring these faults are addressed before product delivery is of great importance for saving time, reducing costs, and maintaining a company’s reputation. By carefully planning and evaluating testing activities across these categories, organizations can develop a robust testing strategy that ensures maximum confidence in the final product.

FAQs about Software Testing Cost

Is performing software testing necessary?

Absolutely! Software testing is essential for identifying and eliminating costly errors that could adversely affect both performance and user experience. Effective testing also covers security assessments to detect and address vulnerabilities, which prevents customer dissatisfaction, business loss, and damage to the brand’s reputation.

How to estimate the cost of software testing?

To estimate the cost of software testing, companies need to break down expenses into key categories for clearer budget allocation.

These categories typically include:

  • Personnel costs: This covers the salaries, benefits, and training expenses for testing team members, including testers, test managers, and automation engineers.
  • Infrastructure costs: These costs encompass hardware, software, and cloud services needed for testing activities, such as server hardware, virtual machines, test environments, and third-party services.
  • Tooling costs: For smaller projects, open-source testing tools may suffice, while larger projects might require premium tool suites, leading to higher expenses.

How much time do software testers need to test software solutions?

The duration of software testing projects varies based on lots of factors, from project requirements, the software’s type and complexity, to features and functionalities included and the testing team’s size.

Final Thoughts about Software Testing Cost

Software testing is a pivotal phase in the SDLC, and understanding its costs can be complex without precise project requirements and a clearly defined scope. Once the technology stack and project scope are established, organizations can better estimate their software testing costs.

For effective software testing cost reduction, companies can explore several strategies. Some of them are implementing early and frequent testing, leveraging test automation, adopting risk-based testing, and integrating testing into the DevOps pipeline. Additionally, outsourcing testing can offer significant cost benefits.

At LQA, we provide comprehensive software testing solutions designed to be both high-quality and cost-effective. Rest assured that your software is free of bugs, user-friendly, secure, and ready for successful deployment.

Contact LQA for reliable and cost-effective software testing

Mobile AppWeb App

Understanding Agile Testing: Life Cycle, Strategy, and More

Agile software development adopts an incremental approach to building software, and agile testing methodology follows suit by incrementally testing features as they are developed. Despite agile’s widespread adoption—reportedly used by 71% of companies globally—many organizations, especially those in regulated industries needing formal documentation and traceability, still rely on waterfall or hybrid development models. Meanwhile, some teams are currently transitioning to agile methodologies.

No matter where your organization stands in the agile journey, this article aims to provide a comprehensive understanding of agile testing fundamentals, from definition, advantages, and life cycle, to effective strategy.

Without further ado, let’s dive right into it!

What is Agile Testing?

Agile testing is a form of software testing that follows agile software development principles. It emphasizes continuous testing throughout the software’s development life cycle (SDLC). Essentially, whenever there is an update to the software code, the agile testing team promptly verifies its functionality to ensure ongoing quality assurance.

What is Agile Testing

What is Agile Testing

In traditional development, testing occurred separately after the coding phase.

In agile, however, testing is an ongoing process, positioning testers between product owners and developers. This arrangement creates a continuous feedback loop, aiding developers in refining their code.

Two key components of agile software testing are continuous integration and continuous delivery.

Continuous integration involves developers integrating their code changes into a shared repository multiple times a day. Meanwhile, continuous delivery ensures that any change passing all tests is automatically deployed to production.

The primary motivation for adopting agile methodology in software testing is its cost and time efficiency. By relying on regular feedback from end users, agile testing addresses a common issue where software teams might misinterpret features and develop solutions that do not meet user requirements. This approach ensures that the final product closely aligns with user needs and expectations.

Agile Testing Life Cycle       

The testing life cycle in agile operates in sync with the overall agile software development life cycle, focusing on continuous testing, collaboration, and enhancement.

Essentially, it comprises 5 key phases, with objectives outlined below:

Agile Testing Life Cycle

Agile Testing Life Cycle

Test planning

  • Initial preparation: At the outset of a project is agile test planning, with testers working closely with product owners, developers, and stakeholders to fully grasp project requirements and user stories.
  • User story analysis: Testers examine user stories to define acceptance criteria and establish test scenarios, ensuring alignment with anticipated user behavior and business goals.
  • Test strategy: Based on the analysis, testers devise a comprehensive test strategy that specifies test types (unit, integration, acceptance, etc.,), tools, and methodologies to be employed.
  • Test estimation: For effective test planning, it’s necessary for your team to estimate testing efforts and resources required to successfully implement each sprint of the strategy.

Check out How to create a test plan: Components, steps and template for further details.

Daily scrums (stand-ups)

  • Collaborative planning: Daily scrum meetings, also known as stand-ups, facilitate synchronized efforts between development and testing teams, enabling them to review progress and plan tasks collaboratively.
  • Difficulty identification: Testers use stand-ups to raise testing obstacles, such as resource limitations and technical issues, that may impact sprint goals.
  • Adaptation: Stand-ups provide an opportunity to adapt testing strategies based on changes in user stories or project priorities decided in the sprint planning meeting.

Release readiness

  • Incremental testing: Agile encourages frequent releases of the product’s potentially shippable increments. Release readiness testing ensures each increment meets stringent quality standards and is deployment-ready.
  • Regression testing: Prior to release, regression testing in agile is conducted to validate that new features and modifications do not adversely impact existing functionalities.
  • User acceptance testing (UAT): Stakeholders engage in UAT to verify software compliance with business requirements and user expectations before final deployment.

Test agility review

  • Continuous evaluation: This refers to regular review sessions throughout the agile testing life cycle to assess the agility of testing processes and their adaptability to evolving requirements.
  • Quality assessment: Test agility reviews help gauge the effectiveness of test cases in identifying defects early in the development phase.

Learn more: Guide to 5 test case design techniques with examples

  • Feedback incorporation: Stakeholder, customer, and team feedback is all integrated to refine testing approaches, aiming to enhance overall quality assurance practices.

Impact assessment

  • Change management: Change management in agile involves frequent adaptations to requirements, scope, or priorities. The impact assessment examines how these changes impact existing test cases, scripts, and overall testing efforts.
  • Risk analysis: Testers examine possible risks associated with changes to effectively prioritize testing tasks and minimize risks.
  • Communication: Impact assessment necessitates clear communication among development, testing, and business teams to ensure everyone comprehends the implications of changes on project timelines and quality goals.

4 Essential Components of an Agile Testing Strategy

In traditional testing, the process heavily relies on comprehensive documentation.

However, the testing process in agile prioritizes software delivery over extensive documentation, allowing testers to adapt quickly to changing requirements.

Therefore, instead of detailing every activity, teams should develop a test strategy that outlines the overall approach, guidelines, and objectives.

While there is no one-size-fits-all formula due to varying team backgrounds and resources, here are 4 key elements that should be included in an agile testing strategy.

Essential Components of an Agile Testing Strategy

Essential Components of an Agile Testing Strategy

Documentation

The first and foremost element of an agile testing strategy is documentation.

The key task here is finding the right balance—providing enough detail to serve its purpose without overloading or missing important information.

Since testing in agile is iterative, quality assurance (QA) teams must create and update a test plan for each new feature and sprint.

Generally, the aim of this plan is to minimize unnecessary information while capturing essential details needed by stakeholders and testers to effectively execute the plan.

A one-page agile test plan template typically includes the following sections:

One-page agile test plan template

One-page agile test plan template

Sprint planning 

In agile testing, it’s crucial for a team to plan their work within time-boxed sprints.

Timeboxing helps define the maximum duration allocated for each sprint, creating a structured framework for iterative development.

Within Scrum – a common agile framework, a sprint typically lasts for one month or less, during which the team aims to achieve predefined sprint goals.

This time-bound approach sets a rhythm for consistent progress and adaptability, fostering a collaborative and responsive environment that aligns with agile principles.

Apart from sprint duration, during sprint planning, a few key things should be factored in:

  • Test objectives based on user stories
  • Test scope and timeline
  • Test types, techniques, data, and environments

Test automation

Test automation is integral to agile testing as it enables teams to quickly keep pace with the rapid development cycles of agile methodology.

But, one important question arises: which tests should be automated first?

Below is a list of questions to help you prioritize better:

  • Will the test be repeated?
  • Is it a high-priority test or feature?
  • Does the test need to run with multiple datasets or paths?
  • Is it a regression or smoke test?
  • Can it be automated with the existing tech stack?
  • Is the area being tested prone to change?
  • Can the tests be executed in parallel or only sequentially?
  • How expensive or complicated is the required test architecture?

Deciding when to automate tests during sprints is another crucial question to ask. Basically, there are two main approaches:

  • Concurrent execution: Automating tests alongside feature development ensures immediate availability of tests, facilitating early bug detection and prompt feedback.
  • Alternating efforts: Automating tests in subsequent sprints following feature development allows developers to focus on new features without interruption but may delay the availability of agile automated testing.

The choice between these approaches should depend on your team dynamics, project timelines, feature complexity, team skill sets, and project requirements. In fact, agile teams may opt for one approach only or a hybrid based on project context and specific needs.

Dig deeper into automation testing:

Risk management

Conducting thorough risk analysis before executing tests boosts the efficiency of agile testing, making sure that resources are allocated effectively and potential pitfalls are mitigated beforehand.

Essentially, tests with higher risk implications require greater attention, time, and effort from your QA team. Moreover, specific tests crucial to certain features must be prioritized during sprint planning.

Contact LQA for expert agile testing solutions

Contact LQA for expert agile testing solutions

Agile Testing Quadrants Explained

The agile testing quadrant, developed by Brian Marick, is a framework that divides the agile testing methodology into four fundamental quadrants.

By categorizing tests into easily understood dimensions, the agile testing quadrant enables effective collaboration and clarity in the testing process, facilitating swift and high-quality product delivery.

At its heart, the framework categorizes tests along two dimensions:

  • Tests that support programming or the team vs. tests that critique the product
  • Tests that are technology-facing vs. tests that are business-facing

But first, here’s a quick explanation of these terms:

  • Tests that support the team: These tests help the team build and modify the application confidently.
  • Tests that critique the product: These tests identify shortcomings in the product or feature.
  • Tests that are technology-facing: These are written from a developer’s perspective, using technical terms.
  • Tests that are business-facing: These are written from a business perspective, using business terminology.
Agile Testing Quadrants Explained

Agile Testing Quadrants Explained

Quadrant 1: Technology-facing tests that support the team

Quadrant 1 includes technology-driven tests performed to support the development team. These tests, primarily automated, focus on internal code quality and provide developers with rapid feedback.

Common tests in this quadrant are:

  • Unit tests
  • Integration/API tests
  • Component tests

These tests are quick to execute, easy to maintain, and essential for Continuous Integration and Continuous Deployment (CI/CD) environments.

Some example frameworks and agile testing tools used in this quadrant are Junit, Nunit, Xunit, RestSharp, RestAssured, Jenkins, Visual Studio, Eclipse, etc.

Quadrant 1 Technology-facing tests that support the team

Quadrant 1: Technology-facing tests that support the team

Quadrant 2: Business-facing tests that support the team

Quadrant 2 involves business-facing tests aimed at supporting the development team. It blends both automated and manual testing approaches, seeking to validate functionalities against specified business requirements.

Tests in Q2 include:

Here, skilled testers collaborate closely with stakeholders and clients to ensure alignment with business goals.

Tools like BDD Cucumber, Specflow, Selenium, and Protractor can help facilitate the efficient execution of tests in this quadrant.

Quadrant 2 Business-facing tests that support the team

Quadrant 2: Business-facing tests that support the team

Quadrant 3: Business-facing tests that critique the product

Quadrant 3 comprises tests that assess the product from both a business and user acceptance perspective. These tests are crucial for verifying the application against user requirements and expectations.

Manual agile testing methods are predominantly used in this quadrant to conduct:

  • Exploratory testing
  • Scenario-based testing
  • Usability testing
  • User acceptance testing
  • Demos and alpha/beta testing

Interestingly, during UAT, testers often collaborate directly with customers to guarantee the product meets user needs effectively.

Quadrant 3 Business-facing tests that critique the product

Quadrant 3: Business-facing tests that critique the product

Quadrant 4: Technology-facing tests that critique the product

Quadrant 4 focuses on technology-driven tests that critique the product’s non-functional aspects, covering from performance, load, stress, scalability, and reliability to compatibility and security testing.

Automation tools to run such non-functional tests include Jmeter, Taurus, Blazemeter, BrowserStack, and OWASP ZAP.

All in all, these four quadrants serve as a flexible framework for your team to efficiently plan testing activities. However, it’s worth noting that there are no strict rules dictating the order in which quadrants should be applied and teams should feel free to adjust based on project requirements, priorities, and risks.

Quadrant 4 Technology-facing tests that critique the product

Quadrant 4: Technology-facing tests that critique the product

Advantages of Agile Testing

Agile testing offers a host of benefits that seamlessly integrate with the agile development methodology.

Advantages of Agile Testing

Advantages of Agile Testing

  • Shorter release cycles

Unlike traditional development cycles, where products are released only after all phases are complete, agile testing integrates development and testing continuously. This approach ensures that products move swiftly from development to deployment, staying relevant in a rapidly evolving market.

  • Higher quality end product

Agile testing enables teams to identify and fix defects early in the development process, reducing the likelihood of bugs making it to the final release.

  • Improved operational efficiency

Agile testing eliminates idle time experienced in linear development models, where testers often wait for projects to reach the testing phase. By parallelizing testing with development, agile maximizes productivity, enabling more tasks to be accomplished in less time.

  • Enhanced end-user satisfaction

Agile testing prioritizes rapid delivery of solutions, meeting customer demands for timely releases. Continuous improvement cycles also ensure that applications evolve to better meet user expectations and enhance overall customer experience.

FAQs about Agile Testing

What is agile methodology in testing?

Agile testing is a form of software testing that follows agile software development principles. It emphasizes continuous testing throughout the software’s development lifecycle. Essentially, whenever there is an update to the software code, the testing team promptly verifies its functionality to ensure ongoing quality assurance.

What are primary principles of agile testing?

When implementing agile testing, teams must uphold several core principles as follows:

  • Continuous feedback
  • Customer satisfaction
  • Open communication
  • Simplicity
  • Adaptability
  • Collaboration

What are some common types of testing in agile?

Five of the most widely adopted agile testing methodologies in current practice are:

  • Test-driven development
  • Acceptance test-driven development
  • Behavior-driven development
  • Exploratory testing
  • Session-based testing

What are key testing metrics in agile?

Agile testing metrics help gauge the quality and effectiveness of testing efforts. Here are some of the most important metrics to consider:

  • Test coverage
  • Defect density
  • Test execution progress
  • Test execution efficiency
  • Cycle time
  • Defect turnaround time
  • Customer satisfaction
  • Agile test velocity
  • Escaped defects

Final Thoughts about Agile Testing

Agile testing aligns closely with agile software development principles, embracing continuous testing throughout the software lifecycle. It enhances product quality and enables shorter release cycles, fostering customer satisfaction through reliable, frequent releases.

While strategies may vary based on team backgrounds and resources, 4 essential elements that should guide agile testing strategies are documentation, sprint planning, test automation, and risk management.

Also, applying the agile testing quadrants framework can further streamline your team’s implementation.

At LTS Group, we boast a robust track record in agile testing—from mobile and web applications to embedded software and automation testing. Our expertise is validated by international certifications such as ISTQB, PMP, and ISO, underscoring our commitment to excellence in software testing.

Should you have any projects in need of agile testing services, drop LQA a line now!

Contact LQA for expert agile testing solutions

Contact LQA for expert agile testing solutions

 

Manual Testing

Non Functional Testing – Everything You Need To Know

Non functional testing and functional testing are both vital to ensure that your product operates as intended. Non functional testing examines aspects that go beyond functionality. It guarantees a superior level of product quality, performance, and usability, which can improve user satisfaction.

Within this blog post, we will provide a comprehensive definition of non functional testing. Furthermore, we will explore a range of examples showcasing non functional tests, shedding light on the specific areas they assess.

Additionally, we will guide you on the most effective approach to aligning non functional testing with your business objectives and user requirements, enabling your business to deliver a remarkable product that fulfills both functional and non functional testing expectations.

What Is Non Functional Testing?

Non functional testing is a critical software testing methodology that assesses an application’s non functional components, encompassing usability, performance, scalability, reliability, security, compatibility, and more.

→ Take a look at: LQA’s software testing services

Non functional testing focuses on ensuring the overall product quality rather than merely examining its features. You have to understand the significant impact that non functional testing has on a product.

Non Functional Testing - Everything You Need To Know

In the realm of software development, non functional testing has equal importance to functional testing. Without it, a system may exhibit flawless performance in a controlled environment and encounter significant failures when confronted with real-world conditions.

Why Use Non Functional Testing?

Functional and non functional testing are both crucial for any software. Functional testing ensures the correct functioning of internal features, while non functional testing evaluates how well the software performs in the external environment.

Non functional testing plays a vital role in examining various aspects such as performance, stability, responsiveness, portability, and more. It involves assessing the software’s installation, setup, and execution.

By gathering measurements and metrics, non functional testing facilitates internal research and development efforts. It provides valuable insights into the software’s behavior and the technologies employed. Moreover, it helps mitigate production risks and reduces associated software costs.

Non Functional Testing Characteristics

The essential traits of non functional testing include:

  • Non functional testing necessitates quantifiable metrics. Therefore, using subjective terms such as “good,” “better,” or “best” is not appropriate for this type of testing.
  • During the initial stages of the requirement process, it may be challenging to ascertain precise figures.
  • Giving priority to the requirements holds immense significance in non functional testing.

Non Functional Testing Types

The following are the prevalent types of non functional testing:

1. Performance testing

Performance testing aims to identify and address the factors that contribute to slow and constrained software performance. The software must exhibit fast response times, ensuring an efficient user experience.

To conduct effective performance testing, businesses should establish a well-defined and specific set of requirements regarding the desired speed. Without clear specifications, it’s hard to determine whether the test results indicate success or failure.

For instance, if 1000 users access an application together, the load time should not exceed 5 seconds.

Tools used: LoadRunner, Apache JMeter, WebLOAD.

2. Load testing

We use load testing to evaluate the system’s capacity to handle increasing concurrent users. It specifically assesses the system’s loading capability and its ability to cope with higher user loads. By simulating real-world scenarios, load testing helps identify potential bottlenecks and performance issues under heavy usage.

To gauge a website’s speed and performance, you can run a quick website speed test, which provides insights into the website’s speed scores. This helps measure the website’s responsiveness and overall user experience.

Tools used: Neoload, Load Multiplier.

3. Security testing

Security testing is employed to identify a software application’s vulnerabilities and weaknesses. This type of testing involves examining the system’s design and adopting the mindset of a potential attacker.

By scrutinizing the application’s code, and potential attack vectors, security testers can pinpoint areas where an attack is most likely to occur. This knowledge is then used to create targeted and effective test cases that assess the application’s resilience against potential security breaches.

Tools Used: ImmuniWeb, Vega, Wapiti

Non Functional Testing - Everything You Need To Know

4. Portability testing

Portability testing focuses on assessing the software’s capability to operate seamlessly across multiple operating systems without encountering any bugs or compatibility issues.

Additionally, this testing also examines the software’s functionality when deployed on the same operating system but with different hardware configurations. By conducting portability testing, one can ensure that the software performs consistently and reliably across various environments, enhancing its usability and flexibility.

Tools Used: SQLMap.

5. Accountability testing

Accountability testing plays a crucial role in determining the correctness of system functionality. The primary objective is to ensure that each function in the system consistently produces the expected outcome for which it was designed.

If the system generates the desired results, it passes the accountability test; however, if it fails to do so, it indicates a potential flaw or malfunction in the system’s functionality.

By conducting thorough accountability testing, one can effectively assess and validate the system’s performance and its ability to meet the intended objectives.

Tools Used: Mentimeter.

6. Reliability testing

Reliability testing is based on the premise that the software system runs without errors within predefined parameters. It involves running the system for a specified duration and several processes to assess its reliability.

The reliability test is considered unsuccessful if the system fails under predetermined circumstances.

For instance, in the case of a website, all web pages and links should be dependable and function reliably. If the system exhibits issues or malfunctions, such as broken links or errors, during the reliability test, it indicates a failure to meet the expected reliability standards.

By conducting reliability testing, one can evaluate the system’s ability to consistently operate as intended and identify any potential weaknesses or areas for improvement in terms of reliability and error-free performance.

Tools Used: Test-retest, Inter-rater.

Non Functional Testing - Everything You Need To Know

7. Efficiency testing

Efficiency testing examines the utilization of resources during a software system’s construction, assessing both the actual resources employed and the ones required. This type of testing aims to determine the efficiency and optimization of resource usage throughout the software development process.

By analyzing resource consumption, such as CPU usage, memory utilization, or network bandwidth, efficiency testing provides insights into the software system’s resource requirements and helps identify potential areas for improvement in resource allocation and utilization.

Tools Used: WebLOAD, LoadNinja.

8. Volume testing

Volume testing, also referred to as flood testing, is a type of software testing that entails subjecting the software to a substantial amount of data. Its purpose is to evaluate the system’s performance by increasing the volume of data in the database.

By simulating scenarios with a large and often excessive amount of data, volume testing helps assess the system’s ability to handle and process such data loads without compromising its performance or stability.

This type of testing ensures that the software can effectively manage and scale with growing data volumes, thus preventing any potential bottlenecks or performance issues.

Tools Used: HammerDB, JdbcSlim.

9. Recovery Testing

Recovery testing assesses an application’s resilience in recovering from crashes, hardware failures, and similar issues.

By intentionally breaking the software through simulated scenarios, recovery testing aids in identifying vulnerabilities and weaknesses in the recovery mechanisms. This type of testing helps make sure that the application can gracefully handle unexpected failures, quickly restore functionality, and minimize any potential data loss or system downtime.

Tools Used: Box Backup, Bacula.

Non Functional Testing - Everything You Need To Know

10. Responsive testing

Responsive testing enables you to evaluate your design across a range of screen widths, providing a more authentic assessment of its adaptability rather than relying solely on predetermined screen sizes.

By utilizing specialized tools, you can test your website’s responsiveness by adjusting the screen width dynamically after entering the website’s URL.

This allows you to observe how your user interface adapts and adjusts in real-time to accommodate different screen sizes.

The primary objective of evaluating responsive websites is to ensure a seamless and friendly user experience across various digital devices. By conducting responsive testing, we can ensure that websites and applications deliver a smooth and consistent experience to users, regardless of the device they are using.

Tools Used: Responsinator, Screenfly, Google DevTools Device Mode.

11. Visual testing

One way to address issues is using visual testing (or visual UI testing). This type of testing focuses on validating whether the software user interface (UI) is displayed correctly to every user.

Visual tests meticulously examine each element on a web page to ensure they have the proper shape, size, and placement as intended. By comparing the application’s visible output to the expected design outcomes, visual testing helps identify “visual bugs” that may exist, separate from functional bugs that affect the software’s overall functionality.

In essence, visual testing plays a crucial role in detecting any discrepancies or issues related to a page or screen’s appearance and presentation.

Tools Used: Percy, PhantomCSS, FBSnapshotTestCase, Gemini, Needle (Uses Python).

Non Functional Testing - Everything You Need To Know

→ Read more:

Non Functional Testing Parameters

Let’s delve into these parameters and examine them in detail:

Non Functional Testing - Everything You Need To Know

  • Security: The security parameter establishes the level of protection a system has against both intended and unintended attacks originating from internal or external sources. Security testing is conducted to assess and verify this protection.
  • Reliability: The reliability parameter examines a system’s capability to perform its intended functions consistently, without any failures over a specific duration. Using reliability testing to evaluate and validate this ability.
  • Survivability: The survivability parameter determines a product’s capacity to maintain its operation and recover from failures or disruptions. We use recovery testing to assess and validate this ability.
  • Availability: The availability parameter determines the level of reliability and consistency a user can expect from a system and its functionalities during operation. We use stability testing to measure and evaluate this parameter.
  • Usability: The usability parameter gauges the user’s ease of interaction with a product, including learning, operating, and input/output preparation. Usability testing is employed to evaluate this aspect and ensure optimal user experience.
  • Scalability: Scalability assesses a system’s capability to adjust its performance in response to varying workloads without compromising its effectiveness. Scalability testing is used to evaluate this ability and ensure optimal performance.
  • Interoperability: The interoperability parameter determines a system’s capacity to interface with other software systems smoothly. Interoperability testing is conducted to verify this ability and ensure smooth integration.
  • Efficiency: Efficiency measures the software system’s ability to handle volume, capacity, and response time effectively.
  • Flexibility: Flexibility refers to the application’s continuous operation across a wide range of hardware and software configurations. For instance, most applications have specific minimum RAM and CPU requirements to ensure proper functionality.
  • Portability: Portability refers to the ease with which an application can transit from one hardware or software environment to another.
  • Reusability: Reusability denotes a component or module in a software system that can be utilized in multiple applications.

Best Practices Of Non Functional Testing

To achieve effective non functional testing, you should take certain best practices into account. 

  • Early engagement: Engage in non functional test activities starting from the early phases of the software development life cycle (SDLC). Collaborate closely with stakeholders, architects, and developers to comprehend non functional requirements and incorporate them into the system design.
  • Well-defined goals: Establish precise and measurable objectives for non functional testing. Set clear targets for performance, security, usability, and other non functional aspects to guide the testing process and provide a basis for evaluation.
  • Realistic test environment: Set up a test environment that resembles the production environment. Use representative hardware, software, network configurations, and data volumes to ensure accurate analysis of performance and behavior.
  • Test automation: Employ test automation tools and frameworks to streamline and expedite non functional testing. Automation facilitates the simulation of user loads, generation of consistent test data, and execution of repetitive tasks, resulting in more efficient and dependable testing.

Non Functional Testing - Everything You Need To Know

→ Don’t miss: 10 BEST Automation Testing Companies Worldwide in 2023

  • Monitoring and performance metrics: Implement robust monitoring mechanisms throughout testing to capture performance metrics such as response times, resource utilization, throughput, and error rates. These metrics provide valuable insights into system behavior, aid in identifying bottlenecks, and facilitate performance analysis.
  • Risk-based testing: Prioritize non functional test cases based on risk analysis and their impact on business operations. Give attention to critical functionalities, high-risk areas, and cases that are likely to lead to performance degradation, security vulnerabilities, or usability issues.
  • Continuous improvement: Foster a culture of ongoing improvement by leveraging insights from testing experiences and incorporating feedback into subsequent iterations. Capture lessons learned, update documentation, and refine testing strategies based on the knowledge gained during non functional testing.

These practices represent only a fraction of the existing methods for efficient non functional testing. By adhering to them, organizations can conduct effective non functional testing to ensure optimal performance, security, usability, and other non functional attributes of their software systems.

Examples Of Non Functional Testing

To gain a better understanding of this concept, let’s explore some examples of non functional testing across different types. The table below illustrates a range of non functional test cases specifically for web applications.

Non Functional Testing - Everything You Need To Know

How To Align Non Functional Testing With Business Goals And User Needs?

Here are some valuable tips to seamlessly align non functional testing with your business objectives and user requirements.

Understand the context

Before commencing non functional testing, you should comprehend the project context, your intended audience, and your business goals.

What are your users’ and clients’ expectations and demands? What are your domain’s and environment’s risks and challenges? Which standards and regulations apply to your software?

Addressing these queries will assist in defining the scope, criteria, and priorities for your non functional testing.

Choose the right techniques

Non functional testing is not a one-size-fits-all approach. Depending on the context, different techniques and tools may be required to measure and evaluate the non functional aspects of your software.

For instance, we use load testing, stress testing, and endurance testing to assess system performance under varying levels of demand. Usability testing, accessibility testing, and user experience testing can be utilized to evaluate user satisfaction and convenience.

Security testing, penetration testing, and vulnerability testing can help identify and mitigate potential threats and breaches. Maintainability testing, portability testing, and compatibility testing ensure software adaptability and interoperability.

Non Functional Testing - Everything You Need To Know

Align with functional testing

Non functional testing should not be treated as a standalone or separate activity from functional testing. Instead, it should be integrated and harmonized with functional testing throughout the software development life cycle.

This approach ensures the relevance, consistency, and comprehensiveness of nonfunctional testing while avoiding duplication, confusion, and conflicts with functional testing.

For instance, leveraging test automation allows for efficient and effective execution of both functional and non functional testing.

Additionally, incorporating non functional requirements and specifications into test cases and code through test-driven development, or behavior-driven development further enhances the integration of non functional aspects.

Communicate the results

Non functional testing goes beyond simply identifying and addressing defects. It also offers valuable insights and feedback to stakeholders and users. Therefore, you should communicate the results of non functional testing in a clear, concise, and persuasive manner.

You can apply various methods and formats to present and report non functional testing results, including graphs, charts, dashboards, metrics, or narratives. Additionally, different channels and platforms can be used to share and discuss these results, such as emails, meetings, demos, or blogs.

The key is to emphasize the benefits and impacts of non functional testing on business goals and user requirements.

Learn and improve

Non functional testing is not a one-off or stagnant endeavor. It’s an ongoing and dynamic process that necessitates continual learning and improvement. Regular and frequent monitoring and measurement of software performance and quality are essential.

→ Read more:

Furthermore, you should review and update non functional testing strategies and techniques in response to the evolving needs and expectations of stakeholders and users. You can apply range of sources and methods, such as surveys, interviews, reviews, or analytics to collect and analyze feedback and data.

Additionally, leveraging various tools and frameworks, such as DevOps, Agile, or Lean, can provide support and enhance non functional testing efforts.

Differences Between Functional And Non Functional Testing Requirements

Let take a quick look at some differences between nonfunctional testing and functional testing:

Non Functional Testing - Everything You Need To Know

FAQ

What is functional vs non functional testing?

Functional testing ensures that the application works as intended. In contrast, non functional testing evaluates the application’s efficiency, performance, security, scalability, reliability, and portability.

What are non functional testing examples?

Non functional testing focuses on evaluating the non functional aspects of the product. To gain a clearer understanding, consider the following examples:

  • Validate that the application’s dashboard loads within 5 seconds upon login.
  • Ensure that email notifications are dispatched within 3 minutes.
  • Verify that the application supports concurrent login by 500 users simultaneously.

What are the challenges of non functional testing?

Below are several risks related to non functional testing:

  • Risk #1: Performance bottlenecks.
  • Risk #2: Security vulnerabilities.
  • Risk #3: Subpar user experience.
  • Risk #4: Compatibility issues.
  • Risk #5: Scalability challenges.

What will happen if non functional requirements are ignored?

Neglecting non functional requirements (NFRs) can significantly affect the adoption of the system, leading to various consequences.

These include the system’s inability to scale up to meet customer demands, sluggish performance resulting in unresponsiveness, security breaches compromising confidential data, and system unavailability during critical periods. Those directly impact business operations.

What is the main goal of non functional testing?

The objective of non functional testing is to enhance the usability, effectiveness, maintainability, and portability of the product. This testing process helps mitigate the manufacturing risk associated with the non functional aspects of the product.

Final Thoughts On Non Functional Testing

Non functional testing plays a crucial role in guaranteeing the overall quality and success of software systems. It extends beyond functional requirements and concentrates on pivotal aspects such as performance, security, usability, scalability, and reliability.

By conducting comprehensive non functional testing, organizations can effectively mitigate risks, elevate user satisfaction, adhere to industry standards, and optimize costs.

At LQA, we have the excellent expertise, specialized skills, and knowledge to conduct comprehensive assessments and evaluations of non-functional attributes.

Our team is highly proficient in utilizing specialized tools and techniques, enabling them to proactively identify and address potential issues.

With our proficiency in performance testing, security testing, usability testing, and compliance testing, we are adept at uncovering hidden problems, optimizing system performance, enhancing security measures, and ensuring a seamless user experience.

Our ultimate goal is to provide clients with high-quality software systems that meet performance expectations, prioritize user satisfaction, safeguard against security threats, and comply with industry standards.

If you are eager to improve the quality and reliability of your software systems, we encourage you to reach out to LQA. Contact us today to discuss your testing requirements and elevate your software to new heights.


BlogBlogBlogBlogBlogBlogBlogBlogBlogEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingEmbedded TestingSoftware Testing

Black Box Testing: Fundamentals, Techniques, and Guide

Black box testing is a popular software testing methodology. It mainly focuses on the input and output of software applications and doesn’t care about the internal code structure of the software.

In this blog, LQA will give you a fundamental guide to black box testing, covering its mechanism, types, techniques, process, and differences from white box testing and gray box testing.

Let’s dive in!

Black Box Testing Fundamentals

What is black box testing?

Black box testing is a software testing methodology in which testers know what the software is supposed to do but don’t know the internal code structure of the software.

Hence, black box test cases are built around specifications and requirements, such as how the application is expected to behave.

Black box testing can be applied to both functional and non-functional testing at every level of software testing: unit, integration, system, and acceptance. Its major objective is to evaluate the software’s functionality, identify errors, and ensure that it meets specified requirements

Example of black box testing

Consider an e-commerce web app. As a black box tester, you check if the app’s login functionality works as expected by entering valid and invalid credentials and verifying the system’s response.

Below is an example of black box test cases to test the login function of the app, in which T = true and F = false.

Decision table test case design exampleBlack box testing tools

Depending on the specific test types, we have different black box testing tools, such as:

  • Functional testing: Selenium, JUnit
  • Performance testing: Apache JMeter, LoadRunner
  • Security testing: OWASP ZAP, Burp Suite
  • Usability testing: UserTesting, Crazy Eg

Pros and cons of black box testing

So, what are the advantages and limitations of black box testing?

Pros of black box testing

The advantages of black box testing include simplicity, realistic evaluation, user focus, early bug detection, and unbiased tests. Here are why:

  • Simplicity: Black box testing doesn’t require knowledge of internal code, allowing a quick and easy start compared to white box testing and gray box testing.
  • Realistic evaluation: Black box testers focus on the output of the software application and how the software works in reality.
  • User focus: Black box testers evaluate software functionality as users, from a user perspective, hence increasing the likelihood of user acceptance.
  • Early testing: Black box test cases can be designed right after the completion of specifications and executed in the early stages of software development, allowing for early detection of functional issues.
  • Unbiased tests: Black box testers provide an unbiased, fresh perspective as they lack knowledge of the internal workings of the app.

Cons of black box testing

Black box testing also has some drawbacks, such as:

  • Dependence on documentation: Black box testing test case design relies heavily on accurate and comprehensive specifications, which may not always be available or up-to-date.
  • Limited code coverage: Black box testing may miss certain code paths and internal logic, reducing the depth of testing coverage.
  • Inefficiency for complex systems: It may not effectively pinpoint intricate code-related issues in complex software architectures, due to its inability to directly access and analyze the internal code structure.
  • Potential for redundancy: Tests can be redundant if already run by the software designer and developers.

Contact LQA

Types of Black Box Testing

Black box testing is applied to 3 major test types: functional testing, non-functional testing, and regression testing.

Functional testing

Functional testing ensures that the software functions as intended. It tests features like input validation, user interface, and data manipulation.

Some common types of functional testing include smoke testing, sanity testing, integration testing, system testing, and regression testing.

Black box testing in functional testing involves creating test cases based on external specifications, executing them to validate functionality, and ensuring that the software meets specified requirements without knowing the internal code.

Non-functional testing

Non-functional testing focuses on aspects other than functionality, including performance, security, usability, and reliability.

In other words, while functional testing checks if the software performs a specific action, non-functional testing checks how the software performs that action under different conditions.

In non-functional testing, black box tests can assess whether the software:

  • is user-friendly
  • performs well under various loads
  • is compatible with different browsers, devices, and environments
  • remains secure against common threats and vulnerabilities

Regression testing

Testers can use black box testing techniques in regression tests to verify whether new changes affect the existing functioning of the system.

Regression testing is often done when there are modifications to a system, such as developing a new function, fixing a bug, or maintenance. In apps with frequent updates, regression testing is often automated for optimal efficiency.

Also read: Software testing basics, principles, skills, phase

Black Box Testing Techniques

There are many black box testing techniques that apply to different logics within software applications. Here are the 5 major techniques.

Black box testing technique Description
Boundary value analysis (BVA) Test the boundaries between partitions.
Equivalence class partitioning Divide the input domains into equivalent classes and test one input from each class.
Decision table based testing Used when the output responds to varied combinations of input.
State transition testing Verify system behavior during state changes.
Error guessing Use testers’ intuition and experience to “guess” errors.

All the above black box testing methods can be done without knowing the internal workings of the system, hence are called black box testing. Let’s dig into them!

1. Boundary value analysis (BVA)

Boundary value analysis, short for BVA, is a black-box testing technique to test the boundaries between partitions instead of testing multiple values in the equivalence region. In BVA, testers assume that if it is true for boundary values, it is true for the whole equivalence region.

Example of BVA: 

Let’s say you’re testing a system where valid age values are between 20 and 50.

  • Test with the minimum boundary value (20). It should be valid.
  • Test with the maximum boundary value (50). It should be valid.
  • Test just below the lower boundary (19). It should be invalid.
  • Test just above the upper boundary (51). It should be invalid.

2. Equivalence class partitioning

In equivalence class partitioning, also known as equivalent partitioning, testers divide all possible inputs into various equivalence data classes (or data groups) and test only one example input from each class, assuming that data in each class behaves the same.

Example of equivalent partitioning:

Imagine you’re testing a system where valid usernames are within 5 – 20 text-only characters. You divide the inputs into 5 groups as below.

Valid input group Example input Invalid input group Example input
Inputs between 5-20 text characters 10 text characters Inputs below 5 characters 3 text characters
Inputs above 20 characters 25 text characters
Empty input (Leave blank)
Inputs contain non-text characters 10 characters contain text and numbers

 

Then, you pick one representative input from each group to test. For instance, if you input 10 text characters, it should be valid. But if you input 4 characters, it should be invalid.

3. Decision table based testing

Decision table, also called a cause-effect table, is a software testing technique based on cause-effect relationships. It is used to test system behavior in which the output depends on a combination of inputs, for instance:

  • Combination of inputs: all blanks/specific blanks in the log-in section are filled in by a user.
  • System behavior: navigate the user to the homepage.

Example of decision table testing: 

An app allows users to log in only when the username, password, and captcha are correct. We have the below table that represents all possible scenarios to test, in which T = true and F = false.

Decision table test case design example

4. State transition testing

In state transition black-box testing, changes in the input make changes to the state of the system and trigger different outputs. In this technique, testers execute valid and invalid cases belonging to a sequence of events to evaluate the system’s behavior.

Example of state transition testing: 

An e-commerce app will lock a user’s account if he/she enters the wrong password 3 times in a row. This means the user will be able to log in if he/she enters the correct password on the 1st, 2nd, 3rd try. Each time the password is entered correctly, the state is transitioned into “Access accepted”. Otherwise, the state turns into “Account locked” after the 3rd time entering the wrong password.

The state transition diagram below represents a sequence of events to test.

State transition diagram for test case design

State transition diagram for test case design

5. Error guessing

In error guessing, you rely on testers’ intuition and experience to anticipate and uncover possible errors or error-prone situations in the software, particularly in situations where formal test cases may be insufficient.

In error guessing, the test cases could be based on:

  • Previous experience in testing related/similar software products.
  • Understanding of the system to be tested.
  • Knowledge of common errors in such applications.
  • Prioritized functions in the requirement specification documents (to not miss them).

Contact LQA

Black Box vs. White Box vs. Gray Box Testing

Black box, white box, and grey box testing make up the three software testing methodologies to test an app as an outsider, an insider, and a partial insider. While black box testing and white box testing are opposite concepts, gray box testing stands in between the two.

Black box vs white box vs gray box testingLet’s dive into a detailed comparison between black box, white box and gray box testing.

Black box testing Gray box testing White box testing
Minimal to no knowledge of internal details Partial knowledge of internal details Full knowledge of internal details
Low-level granularity Medium-level granularity High-level granularity
Focuses on testing the functionality of the software Uncover defects, vulnerabilities, and ensure proper functioning of the software Test the internal logic, code structure, and implementation details of the software
Evaluates a product from the user’s perspective Considers both the user’s perspective and developer’s perspective Evaluation happens from the developer’s perspective
Is often done by end-users, testers and also developers Can be done by developers, testers, and end-users Is generally done by developers and testers
Test cases are designed on the functional specifications Test cases are created based on both functional specifications and some internal knowledge Test cases are designed based on the internal code and structure
Tend to consume the least time among the 3 methods Tend to consume medium time among the 3 methods Tend to consume the most time among the 3 methods
Technique:

  • Boundary value analysis
  • Equivalence class partitioning
  • Decision table testing
  • State transition testing
  • Error guessing
Technique:

  • Matrix testing
  • Orthogonal array testing
  • Pattern testing
  • Regression testing
Technique:

  • Statement coverage
  • Branch coverage
  • Path coverage
  • Condition coverage
  • Decision/Condition coverage

 

How To Perform Black Box Testing?

A standard black box testing process takes place as below:

  • Examine the requirements and specifications of the software
  • Define the testing scope, objectives, and create a test plan
  • Develop test cases based on specifications and user scenarios, including choosing valid inputs, invalid inputs, and expected output for each input.
  • Execute the test cases, entering inputs, observing outputs, and comparing real outputs with expected outputs.
  • Document any discrepancies or defects found during testing.
  • Re-run tests after fixes or changes to ensure existing functionality remains intact.

Frequently Asked Questions about Black Box Testing

1. What are the types of black box testing?

Black box testing is suitable for three primary types of tests: functional testing, non-functional testing, and regression testing.

2. Is black box testing illegal?

No, black box testing is not illegal. It is a legitimate and widely used software testing method where testers assess the functionality of a system without knowing its internal code.

However, it’s crucial to conduct black box testing on systems you have permission to test, respecting ethical and legal boundaries. Unauthorized testing on systems or networks without proper consent is considered illegal and can result in legal consequences.

3. Why might companies prefer black box testing over white box testing?

Black box testing is user-focused and doesn’t require knowledge of internal code. Hence, it is often simpler to start and more cost-effective to carry out compared to white box testing and gray box testing. That’s why companies may prefer black-box testing over white-box testing.

Black Box Testing with LQA

As the pioneering independent software testing company in Vietnam, Lotus Quality Assurance (LQA) stands out as a prominent software quality assurance firm with a wide range of software testing services, covering black box, gray box, and white box testing.

Are you looking for experts in conducting black box testing services? Don’t hesitate to contact LQA’s software testing team.

Contact LQARelated resources:

 

What is Functional Testing? Types and Comprehensive Guide

In today’s ever-evolving software development landscape, functional testing is critical to ensuring that software satisfies its intended specifications and functions seamlessly. Beyond only finding bugs, functional testing examines how well each component works together to contribute to the overall success of the application. 

In this article, we will guide you through the comprehensive exploration of functional test, including its benefits, methodology, and how to complete a successful functional test project. Let’s get cracking!

 

What is Functional Testing Definition?

Functional test is a type of software testing that examines the function of a software application or system. Its main goal is to ensure that the system functions in a way that meets the business demands and conforms to the stated functional criteria.

This involves evaluating the software’s user interactions, data manipulation, input and output from the software, and how it reacts to various scenarios and conditions.

what is functional testing

What is Functional Testing?

 

Functional vs Non-functional Testing: Key Differences

What is functional testing and non functional testing?

Functional and non functional testing are both popular and essential software testing types that help verify if a software’s features work correctly and assess aspects like performance and security for overall reliability.

The differences between functional and non-functional testing lie in their respective focuses. Functional tests focus on verifying if the required functions are met, whereas non-functional tests evaluate non-function aspects of any software such as performance, stability, efficiency, usability, visuals, etc.

functional testing and non functional testing key differences

Functional testing and non functional testing: Key differences

Put simply, functional test tries to answer if the software’s important functions are operating, while non-functional tests care more about how the operations occur.

 

What are the differences between functional and non-functional testing?

Let’s explore the key differences between functional and non-functional testing in the table below:

Aspect Functional testing Non-functional testing
Objective To evaluate if the software app meets functional requirements and operates as intended To assess non-functional aspects such as usability, security, performance, and more
Test coverage Typically concentrates on particular features or functions Covers a larger range of attributes beyond functionality
Examples User acceptance testing, unit testing,  functional system testing, integration testing Security testing, usability testing, compatibility testing, performance testing
Test criteria Criteria for passing or failing are frequently straightforward and determined by expected results Successful or unsuccessful criteria may include thresholds or benchmarks (for example, a response time of less than 2 seconds).
Tools and technologies Some examples of functional testing tools are Selenium, JUnit, TestNG, unified functional testing (UFT), etc Some examples of non-functional testing tools are JMeter, OWASP ZAP, LoadRunner, etc
Objective Measurement Frequently has binary results (pass/fail) according to the expected behavior Frequently uses benchmarks and quantitative measurements for non-functional attributes

 

Why is Functional Testing Important?

Software functional testing is an important phase of the software development life cycle (SDLC) for a variety of reasons:

functional testing benefits

Functional testing benefits

 

  • Verification of requirements: Functional test guarantees that the software meets the requirements. By testing each function or feature, you can ensure that the application acts as expected and meets the functional criteria.
  • Bug detection: One of the key goals of functional test is to find and disclose bugs or problems in software. It aids in identifying disparities between predicted and actual results, allowing developers to correct flaws before the software is published.
  • Software quality improvement: Functional testing helps to improve the overall quality of software by verifying that every module or component carries out its assigned task correctly.
  • User experience optimization: Functional tests improve user experience by identifying and correcting issues early in the SDLC. It helps develop a software product that satisfies users’ expectations and reduces post-release problems.
  • Cost-effectiveness: Resolving problems at a later stage of the software development life cycle or after the product has been delivered is more expensive than identifying and repairing errors early in the process. Functional test lowers the overall cost of development and maintenance by assisting in the early detection of issues.
  • Risk mitigation: Functional testing assists in reducing the risks related to software development by methodically testing the program’s functioning. It gives teams information about the application’s usability, performance, and dependability so they may proactively solve any possible problems.
streamline functional testing with lqaa

Streamline functional testing with LQA

Types of Functional Testing

What are the most common functionality testing types? Here are the most common functional testing examples:

types of functional testing

Types of functional testing

Regression testing

Regression testing ensures that new code does not break current functionality. It determines whether or not the application’s quality has deteriorated. These tests focus on the changes made and guarantee that the entire application is stable.

Unit testing

Unit testing involves breaking down the desired result into smaller units, which allows functional testers to check if a limited number of inputs, sometimes even just one, delivers the desired outcomes. By focusing on testing a specific part of the code, such as a function or method, unit testing is quick to write and run.

Integration testing

Integration testing verifies whether each software parts work properly together. This testing makes sure that the modules function properly when they are dependent on one another, even if they pass independent tests.

Smoke testing

Smoke testing is frequently used when a new build is developed. As an early-stage testing type, this method provides an additional layer of verification to determine whether the new build can move one or requires revisions. 

Sanity testing

A sanity test is executed for a new build that includes small bug fixes or new code, frequently after smoke testing. This method is to verify if every major functionality of an application operates properly both on its own and in combination with others.

Usability testing

Usability testing evaluates a software product’s user interface and overall user experience and addresses usability issues. In this testing method, real users will test the product in a production environment. Their feedback will be collected for future improvements.

 

How to Perform Functional Tests

QA functional testing typically includes the following essential steps:

how to perform functional test

How to perform functional test?

Identify test input

Before the testing phase, quality engineers need to determine the function that needs to be tested, along with its requirements, and how it operates. This essential step allows functional testers to understand the function’s goal and learn the potential user paths.

Create test scenarios

Create a list of every potential test scenario—or at least every crucial one—that may be used for a particular feature. Test scenarios demonstrate how a feature will be used in different contexts. For example, test cases for a payment module might include different currencies, managing expired or invalid card numbers, etc.

Create test data

Based on the test scenarios that you selected, create test data that replicates typical use situations. Input the test data manually with tools like MS Excel, or automatically with a script or testing tool that retrieves data from sources such as a database, flat file, XML, or spreadsheet. Make sure that each input data has relevant information specifying the expected outcome it should produce.

Execute test cases

In this stage, the created test cases are run and the results are recorded. After that, compare the expected and real output. The actual output produced after running the test cases is compared to the predicted output to determine the level of variance in the results. This stage indicates whether or not the system is operating as intended.

streamline functional testing with lqaa

Streamline functional testing with LQA

Why Automate Functional Testing?

There are various advantages of functional testing automation during the SDLC. The following are some reasons why organizations decide to automate functional testing:

why automate functional testing

    Why automate functional testing?

 

  • Efficiency and speed: Automated functional test can be completed faster than manual tests. This leads to more rapid feedback on the software’s quality, which allows more frequent updates and faster release cycles.
  • Reusability: Automated functional tests can be repeated without extra work and reusable at various phases of the development process. This allows consistent testing across different builds and releases, cutting down on redundancy.
  • Improved test coverage:  Automated functional test offers wider coverage of test scenarios and data variances. This leads to higher test coverage, ensuring that all of the application’s components are carefully tested.

In summary, automated functional test improves the software development process’s effectiveness, consistency, and dependability, which leads to better products and quicker release cycles.

 

Improve Your Functional Testing with LQA

Enhancing functional testing involves engaging a specialized software QA & testing firm to ensure a comprehensive evaluation and optimal testing performance.

With over 7 years of experience as the pioneering independent software QA in Vietnam, LQA stands out as a leading IT quality and security assurance organization, providing a comprehensive variety of software QA & testing services to fulfill our clients’ diversified needs.

At LQA, we stay up-to-date on the latest functional testing methodologies and employ industry-leading tools.

lqa software testing tools

LQA robust software testing tools

 

In addition to functional tests, LQA offers full software testing services such as white box, black box, web application, mobile application, API, manual, and automation testing.

Key features of LQA’s functional test solution:

  • Comprehensive software QA solutions include consultation, strategy, execution, and ongoing support.
  • Ensured bug rate of less than 3% for devices, mobile, and web applications.
  • Quick delivery enabled by a wide range of experienced testers.
  • Optimal price-to-quality ratio, leveraging cost savings and the knowledge of Vietnamese IT professionals.
  • Tailored solutions based on industry expertise.
  • Maximum security assured via a Non-disclosure Agreement (NDA) and optimal security procedures during database access.

Connect with LQA’s professionals to improve your functional test experience, ensuring outstanding software quality, bug-free applications, quick project delivery, cost-effective solutions, industry-specific precision, and maximum security.

streamline functional testing with lqaa

Streamline functional testing with LQA

 

Frequently Asked Questions About Functional Testing

1. What is functional testing in software engineering?

Functional testing is a type of software testing that aims to ensure that a software application performs as planned. It entails testing the system’s functionality by providing input and inspecting the output to ensure that the software satisfies the defined requirements and works as intended.

 

2. What is non-functional testing?

In contrast to functional testing, non-functional testing assesses factors including scalability, performance, usability, and dependability. Rather than focusing on particular features or functionalities, it evaluates the system’s non-functional characteristics, such as reaction time, load management, and security.

 

3. What is the difference between unit testing vs functional testing?

Unit testing is a type of functional testing in which the validity of individual modules or components is verified by testing them separately. More broadly, functional testing evaluates the system’s functionality as a whole.

 

4. What is the difference between functional vs regression testing?

Regression testing makes sure that new features don’t negatively affect already-existing functionalities, while functional test confirms that the program operates as intended. Although being one of the functional test types, regression testing focuses on potential problems with new changes, whereas functional test validates features.

 

5. What is the difference between functional vs integration testing?

While integration testing evaluates the connections between various systems or components, the functional test looks at specific functions on their own. Both are a component of functional testing; integration testing makes sure these features work together seamlessly, whereas functional testing concentrates on features.

 

Final Thoughts About Functional Testing

In conclusion, functional test is the key to ensuring software reliability and user satisfaction. Its comprehensive examination of each function not only addresses and fixes possible issues but also guarantees a seamless alignment with user expectations.

Adopting a strong functional test approach is essential since it will protect against bugs and errors in advance, and increase software dependability, and user confidence.

We hope that with our comprehensive guidelines above, you can approach functional tests with confidence, creating software that not only meets but even surpasses user expectations in functionality and performance.

If you are looking for experts in conducting function testing for your software projects, contact LQA’s expert team today for top-notch functional testing services and consultancy. Let’s ensure your software stands out for all the right reasons.

Automated TestingManual TestingManual TestingManual TestingManual TestingManual TestingManual TestingManual TestingManual Testing

Gray Box Testing: Process, Techniques, Pros and Cons

Gray box testing, also spelled grey box testing, is a common method in software testing. The purpose of gray box testing is to search for defects due to improper structure or improper usage of applications.

In this blog, LQA will give you a comprehensive guide to gray box testing and the differences between black box, gray box, and white box testing.

What is Gray Box Testing?

Gray box testing is a software testing method in which testers have partial knowledge of the internal workings of an application.

The major objective of gray box testing is to combine the advantages of black box testing and white box testing to test the product from a user perspective and improve overall user acceptance of the product.

When doing gray box testing, the testing process is guided by the specifications or requirements set for the software. Testers create test cases based on what the software is supposed to do, hence they are called requirement test cases.

Example of gray box testing: Consider testing a mobile banking app. As a gray box tester, you may have some knowledge about the backend server communication. You design test cases to simulate various network conditions, like low connectivity, to observe how the app handles these situations.

Black-box vs. Gray-box vs. White-box Testing

We all know about the three common software testing methods: black box testing, gray box testing, and white box testing.

Black box vs white box vs gray box testing

In black-box testing, testers have no idea about the system’s internal workings, while in white-box testing, testers have full knowledge of the application’s internal workings. Gray box testing is like a mix of black box and white box testing.

Let’s dive into a detailed comparison between black box, white box and gray box testing.

Black box testing Gray box testing White box testing
Minimal to no knowledge of internal details Partial knowledge of internal details Full knowledge of internal details
Low-level granularity Medium-level granularity High-level granularity
Evaluates a product from the user’s perspective Considers both the user’s perspective and developer’s perspective Evaluation happens from the developer’s perspective
Is often done by end-users, testers and also developers Can be done by developers, testers, and end-users Is generally done by developers and testers
Test cases are designed on the functional specifications Test cases are created based on both functional specifications and some internal knowledge Test cases are designed based on the internal code and structure
Tend to consume the least time among the 3 methods Tend to consume medium time among the 3 methods Tend to consume the most time among the 3 methods

 

Also read: Software testing basics, principles, skills, phase

Advantages and Disadvantages Of Gray Box Testing

So, what are the advantages and limitations of gray box testing?

Advantages of gray box testing

In short, gray box testing in software engineering combines the benefits of black box testing and white box testing.

  • Testing accounts for user perspective to improve overall user acceptance of the product.
  • Testers do not need to have programming expertise or extensive internal knowledge of the target system to start.
  • Less chance of introducing bias compared to white-box testing, as testers don’t know the internal details fully.
  • More comprehensive test scenario design than black-box testing thanks to partial knowledge of the internal mechanisms.
  • Is non-intrusive because it doesn’t require full access to the internal code.

Disadvantages of gray box testing

Due to its partial access to the internal code of the system, gray box testing imposes certain limitations.

  • Less test comprehensiveness compared to white-box testing. Due to limited access to complete code path coverage, testers might overlook critical vulnerabilities in the system.
  • Difficult to associate defects with root causes in distributed systems. Distributed systems involve various components and interactions, but testers don’t have full visibility into them.
  • Algorithm testing is impossible as the lack of access to the complete logic of the algorithms.

Gray Box Testing Techniques

When performing gray box testing, there are various techniques you can choose from.

Gray box testing techniques

Matrix testing

Matrix testing is a testing approach that examines all variables in an application, evaluating all business and technical risks associated with them and ensuring their correct and efficient utilization.

In matrix testing, test cases are systematically designed and executed based on a testing matrix structure. The matrix typically represents different combinations of inputs, conditions, or variables that need to be tested.

Orthogonal array testing (OAT)

Orthogonal array testing, or OAT, is basically a systematic and statistically-driven black-box testing technique. It systematically selects specific combinations of inputs to test the system instead of testing every possible combination of inputs.

Imagine you are dealing with a large number of inputs. Now, testing every possible combination of inputs would take a long time. So, you pick a subset of combinations to test from an orthogonal array, which is a structured grid ensuring coverage of various combinations of factor levels.

This method helps achieve a balance between thorough testing and minimizing the number of test cases required.

Pattern testing

Pattern testing in gray box testing involves analyzing historical defects to recognize recurring patterns associated with defects. Then, you can apply those insights to detect anomalies or deviations in coding practices that may lead to errors or vulnerabilities in apps with similar structures.

Example of pattern testing: Checking for consistent coding practices in naming conventions throughout the application.

Regression testing

Regression testing is a technique that verifies whether new changes affect the existing functioning of the system. Common regression test strategies are retest all, retest risky use cases, and regression test selection.

Regression testing is often done when there are modifications to a system, such as developing a new function or fixing a bug. In apps with frequent updates, regression testing is often automated for optimal efficiency.

Contact LQA

The Gray Box Testing Process

A standard gray-box testing process comprises 10 steps as below:

#Step 1: Identify and select inputs

Choose inputs for testing from both white and black box testing methods, considering both external user interactions (black box) and partial knowledge of internal workings (white box).

#Step 2: Identify probable outputs

Determine expected outcomes corresponding to the selected inputs to establish criteria for successful testing.

#Step 3: Identify key paths for the testing phase

Recognize critical paths within the system that need to be tested to ensure comprehensive coverage.

#Step 4: Identify sub-functions

Break down the system into sub-functions for more focused and in-depth testing.

#Step 5:  Identify inputs for subfunctions

Determine inputs specific to each sub-function, tailoring tests to assess individual components.

#Step 6: Identify probable outputs for subfunctions

Anticipate expected outputs corresponding to inputs for each identified sub-function.

#Step 7: Execute sub-function test cases

Perform tests on isolated sub-functions to observe how they respond to various inputs.

#Step 8: Assess and verify outcomes.

Evaluate test results to verify whether the system behaves as expected and meets specified criteria.

#Step 9: Repeat steps 4 & 8 for other subfunctions

#Step 10: Repeat steps 7 & 8 for other subfunctions

Frequently Asked Questions about Gray Box Testing

1. What is gray box penetration testing?

Gray box penetration testing is a cybersecurity assessment approach where the tester is provided with some information, such as system architecture or design details, to simulate the perspective of an attacker with limited insider knowledge.

Gray box penetration testing alongside black box penetration testing and white box penetration testing make up the 3 common penetration testing methods in security testing.

2. What is the difference between gray-box and black-box testing?

The fundamental difference between gray box testing and black box testing is how much testers know about the internal workings of a system, which can be a web app, a mobile app, or a desktop app.

Gray box testers have partial knowledge of the internal details of the system, hence testing the system from both a user perspective and developer perspective.

Black box testers have no idea about the internal details of the system, hence testing the system from a user perspective completely.

3. What is gray box testing also known as?

According to the National Institute of Standards and Technology (NIST), gray box testing is also known as focused testing.

Gray Box Testing by LQA

Gray-box testing is beneficial because it merges the benefits of black box testing and white box testing, combining the simplicity of the black-box approach with the code-specific approach of the white-box approach.

As the pioneering independent software testing company in Vietnam, LQA stands out as a prominent software quality assurance firm with a wide range of software testing services, covering gray box, white box, and black box testing.

Are you looking for experts in conducting gray box testing services? Don’t hesitate to contact LQA’s software testing team.

Contact LQA

Contact LQA at:

Automated TestingAutomated TestingAutomated TestingAutomated TestingAutomated TestingAutomated TestingAutomated Testing

Black Box Penetration Testing: Usage, Techniques, Process 

Penetration testing, or pen testing, also called ‘ethical hacking’, in the world of software testing is a cybersecurity practice that involves simulating cyberattacks on computer systems, networks, or applications to identify and address security vulnerabilities.

Black box penetration testing, together with gray box penetration testing and white box penetration testing, makes up the three major methods in the field of penetration test.

In this article, LQA will give you a comprehensive guide to black box penetration testing and its difference from the other two.

What is black box penetration testing?

Black box penetration testing definition

Black box testing in penetration testing is a security assessment where testers, with no prior knowledge of the system, simulate real-world attacks to identify vulnerabilities from an external perspective.

The goal of black box penetration testing is to assess the system’s resilience to external threats and provide recommendations for improvement.

contact lqa pen test teamKey characteristics of black box testing

  • Limited knowledge: Testers have little to no knowledge of the internal workings, code, or architecture of the system being tested.
  • External perspective: Testing is conducted from an external viewpoint, simulating how an external attacker with no insider information would approach the system.
  • Objective evaluation: Testing is conducted from an external viewpoint, assessing an app’s resistance to external threats without bias from internal knowledge.
  • Real-world simulation: The goal is to simulate real-world attacks to identify vulnerabilities and weaknesses that could be exploited by external threats.

When your organization might need this type of pen test?

With the above characteristics of back box penetration testing, there are various scenarios when your organization might need this type of pen test. Common scenarios are:

  • Early vulnerability detection: Use this type of pen test when your business wants to unveil vulnerabilities at the initial stages of the software development life cycle (SDLC) and address issues before they escalate into significant security concerns.
  • Compliance & regulatory obligations: When industry regulations or compliance standards mandate regular security assessments, black box testing can help meet these requirements by providing an unbiased evaluation.
  • Real-world simulation: A black box approach helps assess your application, infrastructure, or network in a setting that closely mirrors a real-life attack scenario.
  • Third-party vendor assessment: Before onboarding a new third-party service or vendor, conducting black box testing helps ensure the security of their external-facing systems.

Black-box vs. Gray-box vs. White-box Penetration Testing 

black box grey box and white box penetration testing differences

You may want to take a wider look at black box, white box. and gray box testing before digging into these software testing methods in the niche of cybersecurity testing.

Aspect Black box testing White box testing Grey box testing
Knowledge of internal details Minimal to none Comprehensive (full access) Partial (limited internal information)
Testing perspective External (simulates real attacks) Internal (assumes insider knowledge) Blend of external and limited internal
Realism High (simulates external threats) Moderate (assumes some insider knowledge) Balanced realism and efficiency
Pre-engagement information Limited preparation required Detailed internal information needed Moderate preparation required
Focus External threats Internal and external threats Both internal and external threats
Use cases External security assessment Application and internal network testing Third-party vendor assessment, balancing realism and efficiency
Efficiency Quick start May consume more time as detailed internal knowledge required Balanced efficiency and realism

 

Advantages and disadvantages of black box penetration testing

Below are the most common advantages and disadvantages of black box pen test during a penetration testing engagement.

Advantages of black box penetration testing

  • Realistic testing: Assess your application, infrastructure, or network in a setting that closely mirrors a real-life attack scenario.
  • Unbiased evaluation: Testing is conducted from an external viewpoint, eliminating insider bias from internal knowledge.
  • Quick start: Back box testing doesn’t require testers to learn about the internal structure of software, hence allowing a quick start.
  • Cost saving: It may be cheaper to conduct a black box penetration test compared to other pen testing types, as it doesn’t require much time and resources needed for preparation.
  • Reduced chances of overlooking external vulnerabilities: As penetration testers don’t have prior access to the system blueprints and processes, the chances of testers focusing on a specific set of external vulnerabilities and missing out on others are often low.

Disadvantages of black box penetration testing

  • Limited understanding of internal controls: The testing team has restricted knowledge of the internal workings, potentially missing nuanced vulnerabilities that require internal context.
  • Overlooking internal vulnerabilities: The external focus may result in missing certain internal vulnerabilities that could be identified with more internal knowledge.
  • Lack of context: While efficient, the quick start may come at the cost of lacking context for a more nuanced evaluation of internal security measures.

Common Black-box Penetration Testing Techniques

black box penetration testing techniquesEnumeration

Enumeration is about listing test targets for comprehensive testing.

Enumeration involves identifying and listing all possible test targets, such as IP addresses, services, and applications, to create a comprehensive inventory for testing.

It helps testers understand the scope of the system and potential points of entry.

Full port scanning

Full port scanning is crucial for mapping out the entire attack surface and discovering hidden services that might be overlooked with selective scanning.

Full port scanning is a specific scanning technique that involves checking all possible ports on a target system for open and closed statuses. This comprehensive approach helps identify services running on each port, providing insights into potential entry points for attackers.

Fuzzing

Fuzzing, or fuzz tests, is an automated testing technique that injects malformed or random inputs into an application that the application is not designed to handle.

The purpose of fuzz tests is to detect crashes, errors, memory leaks, and different behavior than expected.

Exploratory testing

Exploratory testing is when you perform tests with minimal predefined test plans and test cases and without an expectation or specific outcome.

Exploratory testing uses a dynamic and unscripted approach with the idea of letting the outcomes of one test guide the others.

This particularly works in black-box penetration testing, in which testers have no idea about the internal workings of the system.

Vulnerability scanning

Vulnerability scanning is an automated technique that systematically identifies and evaluates potential vulnerabilities within the target system, network, or application.

In vulnerability scanning, testers leverage automated tools to scan for common vulnerabilities in the target’s external-facing components.

This type of black-box pen test provides a quick and efficient way to identify potential security issues, such as outdated software, misconfigurations, or known vulnerabilities.

Exploitation

Exploitation involves attempting to exploit identified vulnerabilities to gain unauthorized access or compromise the target’s security.

During exploitation, testers simulate real-world attacks, crafting malicious requests to exploit weaknesses in the system’s defenses. This process demonstrates the potential impact of successful exploitation and assesses the overall security resilience of the target

Black Box Penetration Testing Steps

A black box pen test process often goes through 8 steps as below.

black box penetration testing steps1. Scoping the test

In this stage of the penetration test, the team defines the scope of the test, outlining the specific systems, applications, or networks to assess.

They also establish rules of engagement, setting guidelines and limitations for the testing process.

2. Reconnaissance

Reconnaissance involves gathering information about the target system, typically publicly known information such as domain names, employee information, IP addresses, and network configurations.

The purpose of the reconnaissance step is to collect publicly known information about the target system to lay the foundation for subsequent testing phases.

3. Scanning & enumeration

Post reconnaissance, testers conduct a further step to identify additional technical data about the target system, such as types of running software, operating system details, connected systems, user accounts, and user roles.

The step aims to enhance the tester’s understanding and inform subsequent testing actions.

4. Vulnerability discovery

Utilize gathered information in previous steps, testers identify public vulnerabilities in the public components target systems and networks. This involves searching for known common vulnerabilities and exposures (CVEs) in system components, versions, or third-party applications.

5. Exploitation

At this stage, pen testers craft malicious requests or use social engineering techniques to exploit the identified vulnerabilities actively. The objective is to penetrate the system efficiently and navigate to the core.

6. Privilege escalation

After gaining initial access, testers attempt to escalate privileges to achieve complete control over the system and database.

This stage is crucial for assessing the potential impact of a successful attack and understanding the extent of compromised access.

7. Reporting and communicating

After completing black box penetration testing, the test team comprehensively documents findings, outlining discovered vulnerabilities, exploitation methods, and potential risks.

Then, the test team presents a clear and actionable report, providing insights for stakeholders on areas of concern and recommended remediation steps.

8. Remediation and follow-up

At the remediation stage, the test team and stakeholders coordinate to fix and address identified vulnerabilities.

Follow-up assessments should be conducted to verify the effectiveness of remediation efforts and ensure a more secure environment.

How To Choose The Right Pen Test Provider?

There are cases when a company lacks internal capabilities for implementing penetration tests and seeks outsourcing. In such instances, choosing the right provider is crucial to delivering the expected outcomes.

Here are LQA’s suggestions for choosing the right pen test vendor:

  • Prioritize providers with expertise in your industry and familiarity with your specific systems and technologies.
  • Look for a provider willing to customize their testing approach to address your company’s unique security concerns and priorities.
  • Consider the vendor’s price-to-quality commitment, which assesses the cost of the services in relation to the value offered.
  • Investigate the provider’s reputation by reviewing testimonials, case studies, and online feedback from previous clients.
  • Emphasize the provider’s commitment to ethical hacking practices and integrity in handling sensitive information to ensure a trustworthy collaboration.
  • Your vendor should also communicate clearly, detailing their methodologies, findings, and recommendations in a way that is easily understandable for your team.

Black Box Penetration Testing by LQA

Enhancing cybersecurity testing involves engaging a specialized security firm to assess your business’s vulnerabilities and deliver a detailed report with recommended solutions, a crucial step in preventing cyber attacks.

Having more than 7 years of experience, and as the pioneering independent software testing company in Vietnam, LQA stands out as a prominent software quality and security assurance firm, offering a complete range of penetration testing services to fortify businesses against security threats.

Alongside black box penetration testing services, LQA provides comprehensive software testing services including white box, black box, web application, mobile application, API, manual, and automation testing services.

At LQA, we maintain up-to-date expertise on the latest threats, attacks, and vulnerabilities, employing industry-leading tools to conduct comprehensive penetration tests.

contact lqa pen test team

Frequently Asked Questions about Black Box Penetration Testing

1. What is the timeline for black-box penetration testing?

The timeline for black-box penetration testing can vary based on factors such as the scope, complexity of the target environment, and the specific testing objectives.

Below is a typical timeline for black box penetration testing:

  • Planning: 1 – 2 weeks
  • Target system’s information gathering: 1 – 2 weeks
  • Execution: 1 – 2 weeks
  • Reporting: 1 week
  • Communicate reports: 1 day

2. What is more costly: black box or white box penetration testing?

The cost comparison between black box and white box penetration testing is context-dependent. For example:

  • In case you develop the system in-house and have an internal test team who deeply understands the internal structure of the system, you can quickly kick off white box testing with minimal preparation. On the contrary, black box testing demands additional time and resources for information gathering, potentially costing more.
  • In another scenario, where a legacy system lacks documentation and internal teams lack technical insights, white box testing may become more expensive. This is because it necessitates a substantial investment in understanding the system, while black box testing can commence more promptly.

3. What is the difference between gray-box and black-box penetration testing?

Black box penetration testing requires no knowledge of the internal workings of the target system. Meanwhile, gray box penetration testing requires partial knowledge of the internal workings of the target system.

Final Notes On Black Box Penetration Testing

Black box penetration testing is among the three major pen test approaches: black box, grey box, and white box. Among them, the black box method serves as an independent and objective method, simulating real-world cyber threats without prior knowledge of the system’s internal workings.

If you are looking for experts in conducting black box testing services, don’t hesitate to contact LQA’s security testing team.

contact lqa pen test team

Blog

How to Create A Test Plan? Components, Steps and Template

In the dynamic landscape of software development, the journey to crafting flawless and reliable applications begins with a well-defined roadmap — a test plan. As developers, project managers, and decision-makers embark on the quest for software excellence, this article explores the pivotal role of a meticulously designed test plan. Let’s get cracking!

What is A Test Plan?

A test plan is a comprehensive document that outlines the approach, scope, resources, schedule, and activities required for testing a software application or system. It serves as a roadmap for the testing team, providing a detailed guide on how testing will be conducted throughout the development lifecycle.

Essential Components of Every Test Plan

A well-structured test plan includes several essential components that collectively guide the testing process. Here are the key elements that should be present in every test plan:

Essential Components of Every Test Plan

Essential Components of Every Test Plan

  1. Introduction
  • Provides an overview of the test plan.
  • Introduces the purpose, objectives, and scope of the testing effort.
  • Specifies the document’s intended audience and any relevant references.
  1. Test items
  • Lists the specific components or features of the software to be tested.
  • Clearly defines what is included and excluded from the testing scope.
  1. Test deliverables
  • Enumerates the tangible outputs expected from the testing process.
  • Includes items like test cases, test scripts, test data, and test reports.
  1. Testing schedule
  • Outlines the timeline for different testing phases.
  • Includes start and end dates for each testing level (unit testing, integration testing, etc.).
  1. Resource requirements
  • Specifies the personnel, hardware, software, and tools necessary for testing.
  • Ensures that the testing team has the required resources to execute the plan.

Check out top 10 trusted automotion testing tools for flawless software.

  1. Test environment
  • Describes the configuration of the testing environment.
  • Includes details about hardware, software, network setup, and any other relevant configurations.
  1. Entry and exit criteria
  • Defines conditions that must be met to initiate testing (entry criteria).
  • Outlines the conditions that signify the completion of testing (exit criteria).
  1. Test criteria
  • Describes the criteria for determining whether a test has passed or failed.
  • Includes acceptance criteria and any specific conditions for successful testing.
  1. Test levels
  • Identifies the various levels of testing to be conducted (unit, integration, system, acceptance, etc.).
  • Allocates resources and time for each testing level.
  1. Test types
  • Specifies the types of testing to be performed (functional, non-functional, performance, security, etc.).
  • Ensures comprehensive coverage of different aspects of the software.
  1. Test case design
  • Details the methodology for creating test cases.
  • Specifies the structure of test cases, including input data, expected results, and execution steps.
  1. Test execution
  • Describes the process for executing tests.
  • Outlines the sequence, responsibilities, and any specific instructions for test execution.
  1. Defect reporting
  • Explains the process for reporting and managing defects.
  • Defines the format for defect reports and the severity/priority classification.
  1. Risks and contingencies
  • Identifies potential risks to the testing process.
  • Describes contingency plans and mitigation strategies for addressing risks.
  1. Review and approval
  • Specifies the process for reviewing and approving the test plan.
  • Outlines the roles and responsibilities of individuals involved in the review and approval process.
  1. Documentation
  • Lists all the documentation associated with the testing process.
  • Includes references to test cases, test scripts, and any other relevant documentation.
  1. Appendix
  • Contains additional information or supporting documents.
  • May include glossaries, acronyms, or supplementary details.

In case running an in-house testing team is not familiar to you, outsourcing QA to experts is an optimal choice as it can ensure the objective view, save costs and help you focus on core competencies.

Lotus Quality Assurance – the first independent software testing company in Vietnam, offers ranges of software testing services from mobile app testing, web app testing to embedded software testing. With a vast pool of battle-hardened QA engineers, your business can rest assured that the software will run smoothly.

How to Create A Test Plan?

In the ever-evolving landscape of software development, the importance of a well-structured test plan cannot be overstated. For CTOs, project managers, and other IT decision-makers, creating an effective test plan is not just a best practice; it’s a critical component of ensuring the success and reliability of software systems. Let’s zoom in on the preparation, execution, and post-testing.

How to Create A Test Plan

How to Create A Test Plan

Preparation – everything to do before testing software

Before diving into the execution of tests, meticulous preparation sets the stage for a systematic and successful testing process.

  1. Define clear objectives and scope: Begin by clearly articulating the objectives of the testing process. What are you aiming to achieve with the tests? Define the scope of testing, outlining what functionalities will be covered and, equally important, what will not.
  2. Identify stakeholders and input: Recognize the key stakeholders who will play a role in the testing phase. Gather their input to ensure that the test plan aligns with the broader goals of the project. Collaboration and shared understanding are key at this stage.
  3. Establish test criteria: Clearly define the criteria that will determine whether a test is successful or not. This includes acceptance criteria and exit criteria. A well-defined set of criteria provides a roadmap for the testing team and helps in making informed decisions.
  4. Determine test levels: Identify the different levels of testing required for the project, such as unit, integration, system, and acceptance testing. Allocate resources and time for each level, considering the dependencies and relationships between them.
  5. Create detailed test cases: Develop comprehensive test cases based on the project’s requirements. Each test case should include input data, expected results, and step-by-step execution instructions. This forms the backbone of the testing process.
  6. Prioritize test cases: Prioritize test cases based on their criticality and potential impact on the project. This ensures that focus is placed on testing the most crucial functionalities, reducing the risk of overlooking key aspects.
  7. Define test environment: Specify the necessary test environment, including hardware, software, and network configurations. Ensuring that the testing environment mirrors the production environment is vital for accurate and reliable results.
  8. Allocate resources and schedule: Assign responsibilities for test execution and documentation. Allocate resources efficiently, ensuring that team members have access to the required tools and technologies. Develop a realistic and achievable test schedule, considering potential risks and dependencies.
  9. Risk analysis: Identify potential risks associated with the testing process. Develop contingency plans to mitigate these risks and monitor them throughout the testing phase. A proactive approach to risk management is crucial for project success.

Execution – steps to follow to perform testing effectively

With a solid foundation laid during the preparation phase, the execution phase involves hands-on testing and meticulous adherence to the test plan.

  1. Follow test cases methodically: Execute test cases according to the detailed plan. Follow the step-by-step instructions and document the results meticulously. This phase requires careful attention to detail and adherence to the predefined criteria.
  2. Report defects promptly: As defects or issues are identified during testing, report them promptly. Effective communication is essential at this stage to ensure that the development team can address and resolve issues in a timely manner.
  3. Collect data and metrics: Gather relevant data and metrics during the execution of tests. This information provides valuable insights into the performance and quality of the software. Metrics can include test coverage, defect density, and test execution progress. Find out essential QA metrics with examples to navigate software success.
  4. Adapt to changes: Be flexible and adapt to changes as needed. If unforeseen challenges or changes in requirements arise, update the test plan accordingly. Agility and adaptability are key characteristics of a successful testing process.

Post-testing – what to do after running software testing

The post-testing phase involves analyzing the data collected during testing, communicating progress to stakeholders, and finalizing documentation for future reference.

  1. Review and analyze data: Review the data and metrics collected during testing. Analyze the results to identify trends, patterns, and areas for improvement. Use this analysis to inform future testing processes and enhance overall software quality.
  2. Communicate progress: Keep stakeholders informed about the progress of testing. Share test results, issues, and resolutions. Transparency in communication builds trust and ensures that decision-makers have a clear understanding of the software’s current state.
  3. Finalize documentation: Ensure that all test documentation is complete and accurate. This includes updating test cases, recording any changes made during testing, and creating a comprehensive summary report. The summary report should highlight key findings, outcomes, and lessons learned.
  4. Incorporate lessons learned: Reflect on the testing process and incorporate lessons learned. Identify what worked well and areas that could be improved. Use this feedback to refine and enhance the test plan for future projects, fostering a culture of continuous improvement.

The creation of a robust test plan is a strategic imperative for IT decision-makers overseeing software development projects. By investing time and effort in the preparation, execution, and post-testing phases, decision-makers can ensure the delivery of high-quality, reliable software that meets the needs of end-users and stakeholders.

Test Plan Template (Downloadable and Editable)

In case you haven’t create a test plan before and desire to nail it at the very first time, make a copy of our test plan template and tweak it until it meets your unique requirement.

Test Plan Template

The Importance of A Well-crafted Test Plan

A well-crafted test plan is an indispensable asset in the realm of software development, playing a pivotal role in ensuring the success, reliability, and quality of a software product. Here are several key reasons highlighting the importance of a well-structured test plan:

The Importance of A Well-crafted Test Plan

The Importance of A Well-crafted Test Plan

  1. Define clear objectives and scope: A test plan serves as a roadmap by clearly defining the objectives of the testing process. It outlines what is in scope for testing, preventing ambiguity and ensuring that all stakeholders have a shared understanding of the testing goals.
  2. Provide a systematic approach: By detailing the steps to be taken during testing, a test plan provides a systematic and organized approach. This helps testing teams follow a structured methodology, reducing the likelihood of oversights and ensuring comprehensive coverage.
  3. Guide resource allocation: A well-crafted test plan allocates resources effectively. It identifies the personnel, tools, and infrastructure required for testing, ensuring that the testing team has the necessary resources to execute the plan successfully.
  4. Mitigate risks: Through a comprehensive risk analysis, a test plan identifies potential risks associated with the testing process. By outlining contingency plans and mitigation strategies, it enables proactive risk management, minimizing the impact of unforeseen challenges.
  5. Ensure comprehensive test coverage: The plan specifies the different testing levels, types, and methodologies to be employed. This ensures comprehensive coverage of the software, addressing both functional and non-functional aspects and reducing the likelihood of critical issues going unnoticed.
  6. Facilitate communication: A well-documented test plan acts as a communication tool, conveying crucial information to stakeholders, including project managers, developers, and testing teams. It provides transparency, making it easier for everyone involved to understand the testing process and progress.
  7. Aid in test case design: Test cases form the foundation of the testing process. A test plan guides the creation of detailed test cases, specifying input data, expected results, and execution steps. This ensures that testing is thorough and aligns with project requirements.
  8. Enable effective test execution: During the execution phase, the test plan serves as a guide, detailing the sequence of test execution, responsibilities, and any specific instructions. This ensures that tests are carried out consistently and according to the predefined criteria.
  9. Support change management: In the dynamic environment of software development, changes are inevitable. A test plan can be adapted to accommodate changes in requirements or project scope, providing flexibility while maintaining the overall structure of the testing process.
  10. Facilitate post-testing analysis: After the completion of testing, the plan contributes to post-testing analysis. It provides a basis for reviewing collected data, analyzing test results, and identifying areas for improvement. Lessons learned from one project can be applied to enhance future testing processes.

Test Plan Template

FAQs about Test Planning

What is the difference between a test plan vs test case?

A test plan is a comprehensive document outlining the testing strategy, objectives, resources, and schedule for a software project. On the other hand, a test case is a detailed set of instructions specifying the inputs, execution steps, and expected outcomes for a particular test scenario.

What is the difference between test plan vs test strategy?

A test plan is a detailed document that outlines the approach, resources, and schedule for testing a specific software product, while a test strategy is a higher-level document that defines the overall testing approach for an entire project, including the testing methodologies, tools, and resources to be used.

Final Thoughts on Test Plans

In the dynamic and complex world of coding and debugging, a thoughtfully constructed test plan is the guide, the protector, and the guarantor of a software product’s reliability, performance, and ultimately, its success. So, let the test plan be your guiding light as you navigate the challenging seas of software development, paving the way for innovation and excellence in every line of code.

Should you have any further inquiry regarding test planning or software testing outsourcing, please contact us for free consultation.

Test Plan Template

White Box Penetration Testing: Definition, Pros & Cons, and Essential Guide 

In today’s rapidly evolving digital landscape, safeguarding software integrity is a top priority. White box penetration testing is a crucial cornerstone in the proactive defense strategy against emerging cyber threats. This detailed testing approach offers a unique viewpoint, much like a hacker’s perspective from inside the system, enabling a thorough exploration of potential vulnerabilities deeply embedded within the software. 

As the digital world continues to expand and evolve, so do the sophisticated techniques of cyber attackers, white box penetration testing serves as a crucial tool in staying ahead of these threats by revealing weaknesses in the system’s core, allowing for proactive reinforcement of security measures.

Understanding the pivotal role of this method within software quality assurance is essential, as it not only identifies existing vulnerabilities but empowers organizations to proactively strengthen their software, fostering resilience against potential breaches and cyber-attacks.

 

What Is White Box Penetration Testing?

White box penetration testing definition, referred to as clear box or structural testing, is a technique that grants the tester access to the internal structure of the system to replicate a hacker’s actions and uncover potential vulnerabilities. This method provides a comprehensive understanding of the application, identifying all possible entry points into the system.

White box pentest is frequently employed to examine a system’s essential parts, particularly by companies that develop their software products, or integrate multiple applications. It is a method to evaluate a system’s security by assessing its capability to withstand various real-time attacks.

what is white box penetration testing?

What is white box penetration testing?

 

Benefits of White Box Penetration Testing

An efficient white box penetration test helps avoid the issues, errors, and oversights that can leave your businesses vulnerable to hackers. Let’s explore more benefits of white-box penetration testing:

  • Comprehensive oversights of possible issues: White box penetration testing offers the most comprehensive analysis of internal and external vulnerabilities from the internal point of view, which is not available to typical attackers.
  • Early detection: White box penetration testing is integrated into the early development stages, when there is no user interface, and even before the software application is available to users, which enables detecting the vulnerabilities at a very early stage.
  • Extensive testing coverage: White box penetration testing can identify weaknesses in areas that are unreachable for black box testing, for instance, an app’s source code, design, and business logic.
  • Precise identification of weaknesses: Since testers have detailed knowledge of the internal workings of the system, they can pinpoint specific weaknesses, potential security gaps, and flaws in the code logic. This level of detail often leads to more accurate identification of vulnerabilities.
benefits of white box penetration testing

Benefits of white box penetration testing

Disadvantages of White Box Testing

Despite all the appealing advantages, white box penetration testing shows some drawbacks in certain situations:

  • High programming language requirements: Implementing white-box penetration testing involves internal network testing, which requires the testers to be familiar with critical programming tasks, like performing port scanning, SQL injection, and common attacks. By this, they will have a better understanding of the potential access points.
  • Limited real-world simulation: White box testing operates with complete knowledge of the system, which doesn’t accurately replicate real-world attack scenarios where attackers have limited or no knowledge. This approach might overlook vulnerabilities that would be apparent to external attackers working with less information.
  • Risk of biased testing: Testers, armed with complete system details, might inadvertently focus on known weaknesses or areas they are more familiar with, potentially overlooking other vulnerabilities that could be exploited by attackers with different perspectives.
disadvantages of white box penetration testing

Disadvantages of white box penetration testing

 

Black Box, Grey Box and White Box Penetration Testing Differences

Black box, grey box and white box testing are all types of penetration testing – the practice of testing a computer system, network, or web app to find issues, errors, and vulnerabilities that an attacker could exploit. 

black box grey box and white box penetration testing differences

Black box, Grey box and White box penetration testing differences

 

To help you distinguish between black box, grey box and white box penetration testing, understand the benefits and limitations of each type, and when to apply it to get the best results, we have summarized it in the following comparison table:

Aspects Black box penetration testing Grey box penetration testing White box penetration testing
Level of knowledge requirement Require little or no knowledge of infrastructure and network Require basic knowledge of the internal codebase, architecture, and infrastructure Allow complete access to knowledge about the system’s infrastructure, codebase, and network
Level of programming language requirement Require no syntactic knowledge of the programming language Require a basic comprehension of the programming language Require high and professional understanding of programming language
Standard techniques Boundary value analysis, Graph-Based testing, Equivalence partitioning, etc Regression testing, Pattern testing, Matrix testing, Orthogonal array testing, etc Decision coverage, Path testing, Branch testing, Statement coverage, etc
Advantages – Mimics real-world attacks

– Provides an outsider’s perspective

– Encourages creative problem-solving

– Balances realism and deeper insights

– Enables access to some internal system knowledge

– Optimize time and resources

– Understands thoroughly of the system’s internals

– Delivers comprehensive coverage of system security
– Pinpoints vulnerabilities in code and architecture

Disadvantages – Limited insight into internal structures

– Incomplete view of vulnerabilities

– Possible overlook of certain critical vulnerabilities

– Restricted insight compared to White Box

– Dependent on available information

– Possible miss of certain system areas

– Time-consuming due to in-depth analysis
– Costly due to skilled personnel and time- Prone to false positives if not done carefully
When to use – Simulating external threats

– Testing overall security posture

– Assessing response to unknown attackers

– Balancing depth and efficiency

– Targeted testing with some internal insights

– Limited access but need for deeper insight

– Assessing specific system components

– Analyzing code, architecture, and design

– Identifying and fixing intricate flaws

 

The selection of Black Box, Grey Box, or White Box Penetration Testing depends on the level of internal knowledge required, the depth of the assessment needed, and the specific objectives of your security testing rpojects. It’s often beneficial to employ a combination of these methodologies for a comprehensive security assessment based on the unique needs of the system or software being evaluated.

choose the right penetration testing type with lqa experts

Choose the right penetration testing type with LQA experts

 

White Box Penetration Testing Techniques

When it comes to software security testing, security testing white box techniques review source code (the internal structure of the software application) to detect gaps that can make an application vulnerable to cybersecurity threats.

One of the main goals of white box penetration testing is to cover the complete source code as extensively as possible. Three main types of techniques for use in white box penetration testing include Path coverage, Statement coverage, and Branch coverage.

white box penetration testing techniques

White Box Penetration Testing Techniques

Path coverage

This white box test methodology pays attention to all the paths. The path is a flow of execution that follows a set of instructions. The path coverage examines all possible paths of the software and ensures each path is traversed at least once. The path coverage is far more powerful than the branch coverage and is useful for testing complicated builds.

 

Statement coverage

Statement methodology checks if each functionality was tested one time. A statement indicates a functionality or set of actions for the application to decode depending on its programming language. 

An executable statement is when the statement is put together and transformed into an object code, which will subsequently execute the action it was designed for. It helps to uncover unused or missing statements and branches as well as leftover dead codes.

The statement coverage evaluates if each line of code is executed at least once and helps find unnecessary or missing lines.

 

Branch coverage

A branch is one of many execution paths that the code can take after processing a decision statement like an if statement. This method is to confirm that all branch codes are tested.

The branch coverage is tested to check whether all branches in a codebase are exercised by tests and no branch leads to abnormal behavior of the application. It maps the code into branches of conditional logic and ensures that all branches are covered by unit tests.

One should ascertain that all codes have been launched at least once.

 

Common White Box Penetration Testing Tools

Several common tools/libraries employed in white-box penetration testing include:

  1. Metasploit: Penetration testers utilize Metasploit to create and authenticate exploit code before deploying it in real-world scenarios. It’s instrumental for network security testing or remote system intrusion.
  2. Nmap: As an open-source network administration tool, Nmap monitors network connections and scans extensive networks, aiding in host and service auditing as well as intrusion detection. It offers packet-level and scan-level analysis and is freely available for download.
  3. PyTest: Pytest, a comprehensive Python testing tool, facilitates writing more efficient programs, supporting test-driven development (TDD) and behavior-driven development (BDD).
  4. NUnit: NUnit is an open-source unit testing framework beneficial for the .NET Framework and Mono, aiding in writing better code and reducing application bugs.
  5. John the Ripper: This fast password cracker identifies weak Unix passwords and is compatible with various operating systems such as Unix, Windows, DOS, BeOS, and OpenVMS. John the Ripper supports multiple password hash types commonly found in Unix systems and other patches contributed by users.
  6. Wireshark: Functioning as a network traffic analyzer, Wireshark enables monitoring and analyzing traffic within system networks. It is open-source and widely recognized as the foremost network analyzer globally, primarily used by network administrators and professionals to troubleshoot network and system performance issues and filter various network protocols.

The tools employed in white-box penetration testing are similar to those used in other penetration tests, but the methodology for employing these tools differs significantly.

lqa robust penetration testing tools

Access LQA’s Industry-leading Penetration Testing Tools

Essential White Box Penetration Testing Steps

A process of software white box penetration testing comprises the following steps:

white box penetration testing steps

Essential White box penetration testing steps

Source code review

The initial step is understanding the internal structure and functionality of a target software application. This crucial step requires a test engineer to review thoroughly the software’s source code, and understand clearly how it works in order to set the foundation for designing test cases that will help encounter security weaknesses.

 

Select the testing areas

After understanding completely the software’s internal structure and how it functions, the next step is determining the areas that need to be tested. 

As the test aims to encompass every potential scenario for running code systematically, it proves more effective to explore the numerous possibilities within a smaller area rather than a larger one, as the latter wouldn’t ensure the same comprehensive coverage.

Covering a vast area is feasible, yet it demands significant effort, resources, and labor for test coverage. Consequently, it’s not recommended to execute this extensive coverage only on demand. For instance, it becomes essential in situations where it’s crucial to safeguard every aspect of the system; in such cases, it would be deemed necessary.

 

Code & flowchart identification

This step adds a structured approach to the white box penetration testing by visually mapping the code execution process, facilitating a more organized and systematic analysis of the system’s functionalities.

  • Identify potential code lines: Thoroughly examine the system and identify all possible code segments associated with the functionalities or aspects under test. This involves a comprehensive review of the codebase, focusing on critical areas that could be potential sources of vulnerabilities.
  • Create a flow chart: Outline the flow of the identified code segments. Create a flow chart or diagram to represent the flow of code execution, including input points, processing stages, and output results.
  • Output tracing: Document and trace the output of each code segment within the flow chart. This helps in understanding how inputs are processed and how outputs are generated, aiding in the identification of potential vulnerabilities and understanding the system’s behavior.

 

Design test cases

Designing test cases is a pivotal phase in white box penetration testing, involving the creation of detailed scenarios for every identified code segment and system functionality. 

Each test case outlines potential vulnerabilities, failure points, and specific testing procedures. It includes boundary testing, attack scenario simulations, and meticulous recording of testing outcomes to comprehensively evaluate the system’s security posture and ensure a systematic approach to identifying and addressing vulnerabilities.

 

Execute testing 

The execution phase in white box security testing involves putting the devised plans into action, rigorously conducting tests according to the outlined strategies, and repeatedly iterating through the testing process until all identified systems are thoroughly examined, leaving no vulnerabilities unchecked.

This phase includes comprehensive testing, meticulous documentation of findings, validation of vulnerabilities, and continual refinement of testing procedures to ensure the system’s robust security against potential threats.

 

Reporting 

Compile a detailed report that includes identified vulnerabilities, their potential impact, and recommendations for mitigation. This report should prioritize vulnerabilities based on their severity and guide how to address them.

 

Continuous improvement

Security is an ongoing process. Continuous monitoring, regular security assessments, and improvement in policies and practices are essential to maintain a robust security posture.

lqa continuous white box penetration testing solution

LQA continuous white box penetration testing solution

 

White Box Penetration Testing by LQA

Enhancing cybersecurity testing involves engaging a specialized security firm to assess your business’s vulnerabilities and deliver a detailed report with recommended solutions, a crucial step in preventing cyber attacks.

Having more than 7 years of experience, and as the pioneering independent software QA in Vietnam, LQA stands out as a prominent IT quality and security assurance firm, offering a complete range of penetration testing services to fortify businesses against security threats.

lqa software quality assurance awards

LQA software quality assurance awards

Alongside white box penetration testing services, LQA provides comprehensive software testing services including white box, black box, web application, mobile application, API, manual, and automation testing services.

At LQA, we maintain up-to-date expertise on the latest threats, attacks, and vulnerabilities, employing industry-leading tools to conduct comprehensive penetration tests.

lqa software testing tools

LQA robust software testing tools

Key features of LQA’s white box cyber security solution:

Connect with LQA’s experts to safeguard your data and assets from potential hackers today!

lqa white box penetration testing solution

LQA white box penetration testing solution

 

Frequently Asked Questions about Haptic Feedback

1. What is white box penetration testing?

White box penetration testing is a comprehensive security assessment method where testers have complete access to the internal architecture, design, and system details of the target. In this approach, the tester possesses full knowledge of the system’s infrastructure, including source code, network diagrams, and system configurations.

2. What is a white box penetration testing example?

An example of a white box test could involve analyzing the source code of a web application to identify vulnerabilities. Testers would scrutinize the code, look for potential security flaws, and examine the database structure and application logic to uncover weaknesses in the system.

3. What are black box grey box and white box penetration testing?

Black box, grey box, and white box penetration testing are distinct approaches used in security assessments to evaluate the vulnerabilities of a system. Here are the brief definitions of each type of penetration testing:

  • Black box penetration testing: A security testing method where testers have no prior knowledge of the system. They approach it as an external hacker would, without any internal information about the system’s architecture or design.
  • Grey box penetration testing: A security testing method where testers have partial knowledge of the system, such as limited access or some details about the internal architecture. This approach combines elements of both white and black box testing.
  • White box penetration testing: A security testing method where testers have complete access to the internal architecture, design, and system details of the target. Testers possess full knowledge of the system’s infrastructure, including source code, network diagrams, and system configurations.

4. What is the difference between black box and white box penetration testing?

The main difference between black box vs white box penetration testing lies in the level of information and access the testers have. White box testing involves complete access to the internal structure, code, and system design. On the other hand, black box testing operates without any knowledge of the internal system; testers approach it as an external attacker.

5. What is more costly black box or white box penetration testing?

Typically, white box penetration testing is more resource-intensive and thus can be more costly. It demands a higher level of expertise, time, and resources due to the need for in-depth knowledge of the system’s internal workings, including analysis and evaluation of code, architecture, and configurations.

6. What is the white box penetration testing methodology?

White box penetration testing is not just a single test but a methodology involving a structured and systematic approach. It involves various steps such as reconnaissance, scanning, vulnerability assessment, exploitation, and reporting. The white box security testing methodologies focus on a deep dive into the internal workings of a system to identify and mitigate potential vulnerabilities and security risks. White box testing is an essential part of a comprehensive security assessment, ensuring a thorough evaluation of system security from an insider’s perspective, and it plays a crucial role in strengthening the overall security posture of an organization’s infrastructure.

 

Final Thoughts About Whitebox Penetration Test

White box penetration testing serves as an effective method to strengthen software security. The level of complexity varies based on the application under assessment. Evaluating a small application that conducts straightforward operations is a swift process, often taking only a few minutes. However, larger applications necessitate significantly more time, ranging from days to weeks or even months.

Conducting these tests is crucial during the software development phase, both after its initial writing and following any subsequent modifications. Integrating white box penetration testing into your security strategy is pivotal, as it aids in preventing mistakes and oversights that could potentially expose your company to cyber threats.

If you are looking for experts in conducting white box testing for your IT environment or apps to check if they’re secure, don’t hesitate to contact LQA’s security testing team.